Создатели искусственного гения. О бунтарях, которые наделили интеллектом Google, Facebook и весь мир - страница 2

Шрифт
Интервал


 – DNNresearch, – еще менее привлекательное, чем сама страница. Шестидесятичетырехлетний Хинтон, который в стенах университета чувствовал себя как дома – всегда в шерстяном свитере, со взъерошенной сединой и вечными шутками-прибаутками, – не очень-то и хотел создавать эту фирму, но эти двое аспирантов насели и таки уговорили его. Но еще до того, как он добрался до озера Тахо, одна из крупнейших китайских компаний уже успела предложить за его новорожденный стартап 12 миллионов долларов, а чуть позже к торгу подключились еще три компании, в том числе две крупнейшие американские.

Он направлялся к Harrah’s и Harvey’s, двум отелям-казино, расположенным у подножия горнолыжного склона на южной стороне озера. В этих двух гигантских зданиях из стекла, стали и бетона, которые, словно близнецы, возвышаются над невадскими соснами, размещались не только залы казино, но и гостиничные номера, просторные конференц-залы и огромное количество (второразрядных) ресторанов. В том декабре там проходила ежегодная научная конференция, сокращенно именуемая NIPS, что расшифровывается как «нейронные системы обработки информации». Основной сферой интересов ученых, съезжающихся на эту конференцию, является искусственный интеллект (ИИ). Уроженец Лондона, один из первопроходцев, занимавшийся тематикой ИИ с начала 1970-х годов в крупнейших университетах Великобритании, США и Канады, Хинтон посещал эти конференции едва ли не каждый год. Но в этот раз все было по-другому. Хотя китайцы уже четко обозначили свою заинтересованность, он знал, что другие претенденты тоже не заставят себя ждать, и конференция NIPS представлялась ему идеальным местом для проведения такого аукциона.

За два месяца до этого Хинтону и его студентам удалось фундаментальным образом усовершенствовать систему «компьютерного зрения». Они построили так называемую искусственную нейронную сеть, математическую систему, моделирующую биологическую сеть нейронов в мозгу, которая оказалась способна распознавать образы самых обычных объектов>2 – будь то цветы, собаки или автомобили – с немыслимой точностью. Как показали Хинтон и его студенты, такая нейронная сеть может научиться вполне по-человечески распознавать образы, анализируя огромные объемы входящих данных. Методика «глубокого обучения», как назвал этот процесс сам Хинтон, обладала колоссальным потенциалом, и это касалось не только технологий компьютерного зрения, но имело широкие перспективы во множестве других направлений, начиная с «голосовых помощников» и заканчивая разработкой новых лекарств.