>кз в области края собственного поглощения сдвинуты в разных слоях относительно друг друга на величину до 0.05 эВ. Это может быть вызвано внутренним механическим напряжением, разность которого в слоях при медленном и быстром наращивании, (если использовать
dE/dP=7.9×10
>—6 эВ× см
>2/кГ [24]), составляет около 6.3×10
>8 Па. При быстром напылении на стекле и на SiO
>2 —Si внутреннее напряжение получается практически одинаковым.

Отметим, что эти микронапряжения свойственны самой пленке, так как в [21] показано, что в пленках, толщина которых превышает 0.3 мкм, микронапряжения от ее толщины не меняются. Микронапряжения в пленках при медленном испарении распределяются между большим числом кристаллитов и слабее выражаются при определении свойств пленок. В пленках, полученных при быстром испарении, микронапряжения, возможно, приводят к возникновению кристаллитов со ступенчатой структурой: в начальной стадии наращивания пленок происходит конкуренция между частицами с различной ориентировкой, которое приводит к микро-искажению. Выживают те кристаллы, которые ориентированы по направлению молекулярного пучка. На растущих кристаллитах с микро-искажением при определенной их величине возникают условия эпитаксиального роста других кристаллитов. По видимо, большие микроискажения в кристаллитах возникающие при быстром напылении, обусловливают различия в свойствах барьера у поверхности и у подложки, что приводит к инверсии знака фото-ЭДС при фронтальном и тыловом возбуждениях в таких пленках (см. также §4).
§3. Фотопроводимость в поликристаллических пленках CdTe в области примесного поглощения света
При изучении ФП пленок CdTe, обладающих АФН, возникают некоторые сложности, так как появляются фото-ЭДС, сравнимая по величине с приложенным полем, Поэтому надо было провести комплекс исследований, позволяющий отдельно рассматривать ФП и ток короткого замыкания (I>kз), определять разницу барьеров вдоль и поперек клинообразного образца. Для этого изготавливались образцы с крестообразным расположением контактов вдоль и поперек асимметрии слоя. Спектры ФП измеренные с внешним напряжением, приложенным параллельно асимметрии кристаллитов, показан на рис. 6. В длинноволновой области спектра hν <1.15 эВ создается фото-ЭДС намного меньшей величины по сравнению с величиной внешнего напряжения, поэтому в этой области только ФП и фотосигнал совпадают по величине при разных полярностях приложенного напряжения. С увеличением энергии кванта света (hν> 1,15 эВ) уже проявляется влияние фото-ЭДС. В одном случае, когда полярность фото-ЭДС совпадает с полярностью приложенного напряжения, фотосигнал увеличивается (кривая 1). В другом случае когда полярности генерируемого АФН и приложенного внешнего поля противоположны, в результате возникновения большой фото-ЭДС при hν> 1,35 эВ наблюдается инверсия знака (кривая 2). Путем усреднения аналогичных зависимостей было вычислено влияние