Математический календарь. Инструкция по созданию - страница 7

Шрифт
Интервал


Эти даты таковы, что номер дня и номер месяца совпадают:

1 января – День Единицы

2 февраля – День Двойки

3 марта – День Тройки

4 апреля – День Четвёрки

5 мая – День Пятёрки

6 июня – День Шестёрки

7 июля – День Семёрки

8 августа – День Восьмёрки

9 сентября – День Девятки.

К этим датам мы ещё вернёмся, потому что они, как оказалось, обладают весьма существенным потенциалом.

Далее, как было сказано в предисловии, мы установили ещё три праздника:

10 октября – День Десятичной Системы Счисления

11 ноября – День Замечательных Чисел и Констант

12 декабря – День Дюжины.


По аналогии с числом π назначим праздник для другого замечательного числа:

7 февраля (2.7) – День числа е.


Существуют в каждом году даты, которые есть смысл назвать днями Шехерезады: 10 января (1001), 20 февраля (1001 × 2 = 2002) и 30 марта (1001 × 3 = 3003); число 1001 носит имя «число Шехерезады» (помните? «Тысяча и одна ночь»…) и занимательно тем, что кратно 7, 11 и 13.

Так как дней Шехерезады три штуки, то мы в один год как-то решили каждому дать название: 10.01 – чудесный день, 20.02 – волшебный день, 30.03 – магический день.


28 июня пусть будет днём совершенного числа, потому что 6 и 28 являются первыми совершенными числами.

Дни второй степени – 1 января, 2 апреля, 3 сентября.

Дни третьей степени – 1 января, 2 августа.

Ежегодные Дни квадратных корней4 – 1 января, 4 февраля, 9 марта, 16 апреля, 25 мая.

Кроме того, бросим взгляд в прекрасное далёко: почему бы не праздновать дни квадратного корня 19 июня 2114 года (просто 2014 уже прошёл), 22 мая 2115 года, 25 июня 2116 года и 28 сентября 2117 года?

Почему в эти дни? А смотрите ниже!



8 августа – День Бесконечности.

31 мая – День однозначного числа (3 +1 +5 = 9)5.

29 сентября – дата года с максимально возможной суммой цифр (20), а 1 января – с минимальной (2). Но у первого января оказалось столько «праздничного» наполнения, что возникает вопрос, а надо ли его нагружать ещё и этим смыслом.


А теперь снова о датах, в которых номер дня совпадает с номером месяца.

Кроме ежегодных Дней однозначных чисел, они, к примеру, могут быть днями среднего квадратичного или среднего гармонического (об этом подробнее далее).

А также в эти дни можно зарядить забаву: с помощью одной конкретной цифры записать номер года.

Само по себе задание не такое уж сложное: если совсем уж в лоб, то 2023 =