Элементы жизни - страница 27

Шрифт
Интервал


Глава 3. Конкуренция за элементы

Отчего для нас он – курчатовий, а для них – резерфордий

В 70-е годы прошлого века все советские школьники в кабинетах химии видели в таблице Менделеева под номером 104 химический элемент с названием «курчатовий» (Ku). До сих пор многие из них, став взрослыми людьми, не понимают, куда делся этот родной нам элемент и почему на его месте теперь во всех периодических таблицах мира расположился заморский резерфордий.

История исчезновения курчатовия и замещения его резерфордием связана с интереснейшей и во многом загадочной областью физики – синтезом тяжелых ядер. Именно синтез ядер замешан в истории с химическим элементом номер 104.

Ядро любого химического элемента состоит из протонов и нейтронов. Протон и нейтрон почти одинаково тяжелые – масса нейтрона больше массы протона всего на 0,1378%. Самое легкое ядро у водорода (>1Н) – оно содержит всего один протон. Чем больше протонов и нейтронов в ядре, тем оно тяжелее. С нарастанием массы ядра растет и порядковый номер химического элемента в периодической системе (порядковый номер химического элемента равен числу протонов в его ядре). Следовательно, самые тяжелые ядра сконцентрированы в самом низу периодической таблицы химических элементов.

Тяжелое, а значит, крупное по размеру ядро может распасться на несколько мелких. Такой процесс называется реакцией распада. Если происходит наоборот – несколько более мелких ядер объединяются в одно более крупное, – это событие называется реакцией синтеза. Естественные реакции ядерного синтеза во Вселенной распространены очень широко. В процессе синтеза ядер гелия (>2Не) из ядер водорода насыщаются выделяемой при синтезе энергией видимые нам звезды. Первую искусственную реакцию термоядерного синтеза человек использовал для создания водородной бомбы, но не сумел пока найти способ направить термоядерный синтез в мирное русло и научиться получать с его помощью энергию для жизни.

Единственный мирный вариант искусственного синтеза новых ядер в мирных целях доступен физикам, работающим на ускорителях тяжелых ионов. В таких экспериментах обычно получают считанные количества новых ядер – до нескольких десятков. И нужно проявить большое искусство и сообразительность, чтобы с помощью приборов достоверно узнать, что за ядра получились при синтезе. Причем важно не только узнать ядра «в лицо», но и убедительно доказать, что «лицо» опознано верно. К тому же распознать продукт синтеза нужно необычайно быстро, поскольку он почти всегда не жилец – тут же начинает делиться, испуская нейтроны, электроны или альфа-частицы и распадаясь на другие элементы – долгоживущие.