The dispatcher’s work proceeds in the constant adoption of operational decisions. The degree of efficiency depends on the needs and capabilities of forecasting specific situations.
The need for an operational forecast can extend over a very long period. Let’s imagine the situation in a RTCC, the scope of which includes a large seaport, and the cargo comes from loading stations located at distances of several thousand kilometers. Linking the approach of wagons with the approach of ships, especially taking into account weather conditions, requires a forecast of the operational situation for 10—15 days ahead.
A multi-day forecast is also required to solve the problem of organizing the turnover of locomotives and locomotive crews. At the same time, a forecast for 20—30 minutes may be sufficient for the train dispatcher to solve a specific conflict situation of train traffic on the section.
Therefore, for each task performed in the RTCC, the developer of an intelligent management system determines the required forecast period and the real possibilities of obtaining it based on relevant information, including those available in existing databases (APOMS-2, etc.).
In the classical formulation, the well-known problem of the distribution of empty wagons is considered as a transport problem of linear or dynamic programming with cost optimization at a minimum of wagon-kilometers. If the «just in time» condition is met, it is necessary to take into account the additional condition of dynamics in terms of the time of receipt and the time of «consumption» (feeding for loading) of empty wagons. Developers of intelligent systems should take this into account.
In market conditions, guaranteed delivery of goods is one of the main tasks of JSC «Russian Railways». This is the most important indicator of the quality of the company’s products, its competitiveness.
It is required to develop an intelligent system with the objective function of minimizing fines paid by JSC «Russian Railways» due to late delivery of goods. The methodology for solving this problem within the framework of the RTCC should be based on the ranking of wagons arriving at the railway (in the region) with varying degrees of delay in relation to the delivery dates, determining regulatory measures to accelerate the promotion of such wagons, taking into account the degree of their delay, developing proactive measures for wagons with possible violations of the delivery time of goods.