Думай «почему?». Причина и следствие как ключ к мышлению - страница 26

Шрифт
Интервал


Мы переходим на следующую ступень запросов о причинности, когда начинаем менять мир. Обычный вопрос для этого уровня будет таким: «Как изменятся продажи зубной нити, если удвоить стоимость зубной пасты?». Это уже требует нового вида знаний, которого нет в наших данных, обнаруженных на втором уровне Лестницы Причинности – интервенции.

Интервенция стоит выше ассоциации, потому что подразумевает не только наблюдение, но и изменение. Когда мы видим дым и когда дымим сами, это подразумевает совершенно разное представление о вероятности пожара. На вопросы об интервенции нельзя ответить с помощью пассивно собранных данных, и неважно, насколько велик их объем или насколько глубока нейронная сеть. Для многих ученых стала настоящим ударом информация о том, что никакие методы, известные из статистики, не позволяют даже выразить простой вопрос, например «Что будет, если мы удвоим цену?», не говоря уже о его решении. Я знаю это, поскольку много раз помогал им подняться на следующую перекладину лестницы.

Почему нельзя ответить на вопрос о зубной нити просто при помощи наблюдения? Ведь можно заглянуть в нашу обширную базу данных о предыдущих покупках, посмотреть, что было раньше, когда зубная паста стоила в два раза больше? Причина в том, что в предыдущих случаях цена могла быть выше по другим причинам. Предположим, товара осталось немного и всем остальным магазинам тоже пришлось повысить цены. Но теперь вы размышляете о намеренном вмешательстве, после которого установится новая цена, независимо от условий на рынке. Результат может сильно отличаться от предыдущего, когда покупатель не мог купить товар по более выгодной цене в других местах. Если бы у вас были данные об условиях на рынке в других ситуациях, вероятно, вы смогли бы предсказать все это лучше, но какие данные нужны? И как это выяснить? Наука о причинном выводе позволяет нам отвечать именно на эти вопросы.

Непосредственный способ предсказать результат интервенции – провести с ней эксперимент в тщательно контролируемых условиях. Компании, работающие с большими данными, такие как «Фейсбук», знают об этом и постоянно ставят эксперименты, чтобы посмотреть, что случится, если по-другому разместить элементы на экране или показать клиенту новую подсказку (либо даже новую цену).