Применение элементов искусственного интеллекта в решении прикладных задач - страница 2

Шрифт
Интервал


ИИ – это область исследований, которая фокусируется на создании интеллектуальных машин, устройств, систем, алгоритмов и так далее. Компьютеры лежат в основе ИИ, а интеллектуальная машина спроектирована таким образом, чтобы она могла эффективно решать проблемы в реальном мире.

Для решения подобных задач можно использовать множество различных алгоритмов и интеллектуальных систем. Машина может быть разумной, если она может выполнять интеллектуальные задачи – эта концепция отличается от системы ИИ, которая имеет определенный набор правил, включая способность учиться, учиться выполнять интеллектуальные задачи, а также иметь долговременную память. Все виды алгоритмов можно использовать для решения интеллектуальных задач – научиться вести себя, обнаруживать закономерности и отличать реальный мир от его симуляций.

Исследователи ИИ считают, что все интеллектуальные системы можно улучшить, улучшив их способность выполнять интеллектуальные задачи – это называется алгоритмическим интеллектом или способностью машины к обучению. Однако в этой области существуют некоторые разногласия по поводу определения интеллектуальных машин, а также надежности и надежности существующих методов проектирования и улучшения интеллектуальных систем.

Эволюция ИИ

Путь от конкретной проблемы к решению ИИ называется процессом «машинного обучения». Примеры алгоритмов машинного обучения включают машинное обучение в форме нейронных сетей, которые могут идентифицировать закономерности в реальном мире и системы классификации, которые могут идентифицировать различные объекты в заданном наборе изображений.

Одной из важных особенностей ИИ является то, что качество предсказаний можно улучшить, изменив параметры (которые называются «признаками») и набор данных (в случае алгоритмов классификации). Например, в случае алгоритмов классификации, если набор данных основан на идентификации разных цветов, то при изменении набора данных прогнозы изменятся и могут лучше предсказывать цвета. Эта особенность машинного обучения играет ключевую роль в понимании точности алгоритмов ИИ.

ИИ – это динамичная и быстро развивающаяся область исследований с широким спектром различных приложений. Существует несколько интерпретаций ИИ. ИИ – это не отдельная технология, а целый ряд технологий, в частности, машинное обучение, искусственные нейронные сети, крупномасштабные распределенные системы и так далее. В частности, машинное обучение и глубокое обучение – это два разных термина, используемых в разных дисциплинах. Машинное обучение – это метод применения алгоритмов машинного обучения в машине, которая требует любого рода входных данных, например, в автомобиле, который будет водить сам себя.