Иррациональность и трансцендентность
Для простейшего счета все числа равноценны. Подступая к божественному знанию, мы видим, что среди них есть особенные, имеющие собственные «задачи». Но в иных измерениях натуральный ряд цифр – сложен, а фундаментальные иррациональности просты и составляют целый класс прозрачных истин.
Шпенглер полагал, что в архитектуре древних греков и готических соборов явлена евклидова геометрия. Но это ошибка. Греки как раз заложили основу поправок к геометрии с учетом зрительных искажений. Они не строили фундаменты храмов по линейке, поскольку тогда взгляд со стороны делал бы их искривленными. Парфенон вобрал в себя множество подобных архитектурных уловок. Простейшая геометрия для архитектора – только самый примитивный уровень его искусства, в котором есть закономерности не только внешних форм, но и внутреннего содержания, позволяющего возводить сооружения, существующие веками.
Пифагор, – пишет Шпенглер, – изрек решающую формулу: число было для него межевым знаком ставшего. А вот Евклид, завершивший в стереометрии античную математику в 3 в. до н. э., «говоря о треугольнике, с глубочайшей необходимостью имеет в виду ограниченную поверхность тела, но никогда – систему трех пересекающихся линий или группу трех точек в трехмерном пространстве. Он характеризует линию как „длину без ширины“. В наших устах эта дефиниция была бы жалкой. В пределах античной математики она превосходна». Но что же здесь жалкого? Длина без ширины – самое короткое определение, самый компактный алгоритм для понимания. Никакого даже сравнительно компактного определения для понятия «кривая» современная математика не знает. Она занимается классами кривых, каждый раз измышляя свое – весьма нетривиальное – определение.
Шпенглер в противовес мнению Канта считал, что «западное» число «изошло не из времени, как априорной формы созерцания, но в качестве порядка однородных единиц является чем-то специфически пространственным». «Античное число не есть мышление о пространственных отношениях, но о размежеванных для телесного глаза и осязаемых единицах. Поэтому античность – это следует необходимым образом – знает только „естественные“ (положительные, целые) числа, которые среди многих в высшей степени абстрактных родов чисел западной математики, комплексных, гиперкомплексных, неархимедовских и прочих систем играют ничем не примечательную роль».