Возможны ли измерения в теории относительности? Конечно, нет! - страница 3

Шрифт
Интервал


2-й вариант. 1-й отрезок не изменился; 2-й отрезок стал длиннее.

3-й вариант. 1-й отрезок стал короче; 2-й отрезок стал длиннее.

4-й вариант. Оба отрезка укоротились, но 1-й отрезок укоротился больше, чем 2-й

5-й вариант. Оба отрезка стали длиннее, но 2-й отрезок удлинился больше, чем 1-й.

Нет никакой возможности узнать, что произошло с отрезками на самом деле. Это можно узнать, если только заранее… «Что если только заранее…»? Если только заранее у нас имеется аксиома: «Обязательно существует отрезок, длина которого не меняется ни при каких обстоятельствах. Этот отрезок абсолютен, и он может быть принят за единицу измерения, а измерения после этого будут возможны, однозначны и непротиворечивы». Точно такая же аксиома у геометра появится и по отношению к углам. После того как эталонный отрезок или угол будут построены геометром, то они уже не имеют права меняться ни при каких обстоятельствах. То же самое будет иметь силу и для других фигур, также уже построенных геометром. Иначе ни о каких измерениях речи быть не может! А теперь вопрос, что означает «ни при каких обстоятельствах»? А это в том числе означает и то, что фигуры, будучи построенные геометром, не меняются и тогда когда они двигаются относительно чего-либо. К вопросу неизменности фигур при движении я ещё вернусь, когда буду обсуждать относительность движения. Но внимательный читатель уже сейчас понимает важность «аксиом неизменности фигур». У релятивистов длина движущегося отрезка зависит от скорости, а это противоречит только что высказанной аксиоме, превращая понятие измерения в бессмыслицу.

Итак, восстанавливая приблизительную схему рассуждений древнего геометра про возможность измерений, мы убеждаемся в том, что он вполне корректно (по-научному) применил принцип относительности в решении этого вопроса. И хотя он, наверно, и не пользовался словами «абсолютное и относительное», он все-таки интуитивно понимал, что эти «сущности» в правильных, логичных рассуждениях всегда присутствуют вместе. Выражаясь современным языком, древний геометр понимал, что абсолютное и относительное – парные понятия, и каждое по отдельности, одно без другого есть бессмыслица. А что же тогда мешает нам, современным, достаточно образованным людям понимать это и сейчас, в наше время? А мешает такому пониманию появление релятивистов. Они появились, заявили, что «все относительно», предложили нам откровенно псевдонаучную «теорию относительности», под видом научной теории. Говоря простым языком, многих из нас им удалось «сбить с толку». Эта книга как раз и посвящена объяснению того, как релятивистам удается «сбивать нас с толку».