Мы часто обсуждали этот сюжет в контексте нашей роли исследователей для федерального правительства. Почему? Потому что нам казалось, что ситуация никогда не разворачивалась таким образом. На ранних этапах нашей карьеры мы часто наблюдали нечто противоположное.
Мы представляли нашу работу людям, смотревшим на нас пустыми глазами, которые вяло кивали, а иногда почти засыпали. Мы наблюдали за тем, как сбитые с толку зрители воспринимали все, что мы говорили, без единого вопроса. Их либо впечатляло то, какими умными мы казались, либо им было скучно, потому что они ничего не понимали. Никто не просил повторить сказанное на понятном всем языке. Очень часто ситуация разворачивалась следующим образом:
Мы: «Проведя анализ бинарной переменной отклика методом контролируемого обучения с использованием множественной логистической регрессии, мы получили вневыборочную производительность со специфичностью 0,76 и несколько статистически значимых независимых переменных с использованием значений альфа равных 0,05».
Бизнес-профессионал: *неловкое молчание*
Мы: «Это понятно?»
Бизнес-профессионал: *снова тишина*
Мы: «Есть вопросы?»
Бизнес-профессионал: «В данный момент вопросов нет».
Внутренний монолог бизнес-профессионала: «О чем, черт возьми, они говорят?»
Увидев подобную сцену в кино, вы могли бы подумать: надо перемотать назад, возможно, я что-то упустил. Но в реальной жизни, когда принимаемые решения имеют огромное влияние на результат миссии, такое случается редко. Мы не перематываем. Мы не просим разъяснений.
Оглядываясь назад, мы понимаем, что наши презентации были слишком техническими. Отчасти причина заключалась в банальном упрямстве: до ипотечного кризиса технические детали чрезмерно упрощались; аналитиков приглашали для того, чтобы они говорили руководителям то, что те хотели услышать, но мы не собирались играть в эту игру. Мы хотели, чтобы наши зрители понимали нас.
Но мы перестарались. Наша аудитория не могла критически осмыслить результаты нашей работы, потому что не понимала, о чем мы говорили.
Мы подумали, что должен быть способ получше. Мы хотели повлиять на ситуацию с помощью своей работы, поэтому начали практиковаться в объяснении сложных статистических концепций друг другу и нашим зрителям, а также исследовать то, как наши объяснения воспринимают другие люди.