Все науки. №3, 2023. Международный научный журнал - страница 4

Шрифт
Интервал




Таким образом, при логарифмировании, образуются 2 части самого выражения – действительная, как натуральный логарифм от коэффициента ингенциальной части и логарифм от ингенциальной единицы, которая определяется в (2).



То есть имеется в этом случае возникает вопрос, в какую степень необходимо возвести число Эйлера, чтобы она выдало ингенциальную единицу. Ответ довольно прост – это отрицательный логарифм от нуля (2) из этого следует, что логарифм от ингенциального числа составляет (3).



Также интересно решение уравнения Эйлера с ингенциальной единицей, а после и с общим видом ингенциального числа, что и описывалось далее, приняв выражения как неизвестные. И для этого изначально можно исходить из разложений Тейлора (4—6).





Что легко доказывается, поскольку при обнулении неизвестной синус в (5) также обнуляется, а косинус в (6) равняется единице. И уже из этого вытекает (7).



И неизвестным в (7) могут быть все возможные числа, как комплексные, при подстановке которых вытекает замечательное равенство Эйлера, так и ингенциальные. И для начала, рассмотрим частный случай, с ингенциальной единицей и произведём следующие преобразования (8).



Исходя из этого соотношения выполняем преобразования в (9), приведя к уравнению (10), при этом учитывая, что это выражение является тождественным возможно дифференцировать обе части уравнения в (11), выполнив соответствующие преобразования.





Поскольку завершающее равенство (11) можно представить как в (12), далее проведя дополнительное дифференцирование, также вводя условие, что это тождество, а в (13) подробно расписан процесс дифференцирования для правой стороны равенства. А для левой же части нет необходимости в подробной росписи.




Когда дифференцирование произведено, достаточно произвести элементарные преобразования, получив тригонометрический вид частного случая (14).



Теперь же, когда получен общий вид для дважды дифференцированного случая, необходимо вернуться к первообразным, ибо это тождество, в результате чего получаются следующие равенства (15—16).




И действительно это значение близко к самому ингенциальному значению, таким образом это выражение может считаться вторым видом записи ингенциальной единицы. Теперь же, можно переходить и к решению уравнения Эйлера для общего вида ингенциальных чисел, проведя в начале первую подстановку и обычные операции замены на этапе (17) и (18).