Жизнь проста. Как бритва Оккама освободила науку и стала ключом к познанию тайн Вселенной - страница 21

Шрифт
Интервал


,[40]. Таким образом, квест под названием «восстановление репутации планет» стал главной задачей для астрономов более чем на две тысячи лет.

Первым, кто принял вызов по восстановлению репутации планет, был ученик Платона Евдокс Книдский (ок. 408 – ок. 355 до н. э.), который добавил дополнительные сферы к уже существующей – эта модель станет хорошо известной. Представьте, что вы стоите в пещере Платона, которая находится в центре упрощенной модели Евдокса, состоящей всего лишь из одной сферы, которая представлена на рис. 5 как участок прозрачной сферы в виде обода (однако при этом следует помнить, что Евдокс представлял цельную сферу). Где-то на внутренней стороне окружности этого обода размещается источник яркого света, который мы будем называть «планетой». Теперь представим, что мы смотрим только на этот свет по мере того, как обод вращается. В этом случае мы совершенно точно увидим, что планета совершает равномерное круговое движение. Представим далее, что с внутренней стороны обода мы поместили прозрачную сферу таким образом, что обод и сфера имеют один центр (гомоцентричны). Теперь обод будет приводиться в действие колесиками, или роликами, и скользить по неподвижной направляющей на поверхности прозрачной сферы. Если смотреть с той позиции, на которой мы находимся, то есть из центра обода и сферы, то будет казаться, что планета движется по окружности. А теперь допустим, что одновременно с тем, как вращается обод, вращается и внутренняя сфера, но вокруг другой оси. Планета по-прежнему вращается по окружности, если смотреть с позиции планеты, однако, если смотреть с нашей позиции «внутри пещеры», мы увидим, что она движется по более сложной траектории, которая является результатом наложения двух круговых движений. Это дает нам представление о движении планет в небе.

Кинематическая модель Евдокса, в которой видимые движения Солнца, Луны и планет получались как результат комбинации равномерных круговых движений, доказала свою эффективность, однако в ней было задействовано 27 взаимосвязанных сфер, вращающихся вокруг Земли. Ученик Платона Аристотель, проявлявший интерес к механике, добавил еще несколько сфер, создав нечто наподобие современного шарикоподшипникового механизма, благодаря которому движение одной сферы не передавалось на соседнюю сферу. Таким образом, количество небесных сфер возросло до 56. Однако проблема оставалась нерешенной. Сколько бы ни увеличивали количество твердых вращающихся сфер, это все равно не могло объяснить еще одной особенности движения планет – нарастания и убывания их яркости. Объяснить постоянные изменения яркости можно лишь тем, что планеты находятся то ближе (яркость усиливается), то дальше (яркость ослабевает) от Земли. Как им удается совершать такие маневры, находясь на поверхности твердой сферы?