Жизнь проста. Как бритва Оккама освободила науку и стала ключом к познанию тайн Вселенной - страница 60

Шрифт
Интервал


. Самое примечательное, что в течение нескольких десятилетий после отъезда Уильяма в Оксфорде появились Оксфордские, или Мертонские, калькуляторы – группа ученых, которая прославилась не богословскими идеями, а революционным применением математики в естественных науках. Вдохновением для них, скорее всего, послужил Оккам.

Никто из Оксфордских калькуляторов прямо не ссылается на Уильяма и его работы, поскольку в то время он обвинялся в ереси и был отлучен от церкви. Однако, учитывая увлечение Оккама математикой, в их работах очевидно его влияние.

КВАДРАТУРА КРУГА

Напомню, что Аристотель стремился категоризировать мир. Он распределил универсалии по десяти категориям, среди которых субстанция (сущность), количество, качество, время, место, страдание (претерпевание), действие и т. д. Затем он усложнил задачу, отказавшись от применения одних и тех же рассуждений или доводов сразу к нескольким категориям. Например, категория количества включала числа, но не субстанции, а категория качества использовалась для описания материальных объектов (объектов, обладающих сущностью), в том числе их свойств – например, камень имеет обыкновение падать, дым подниматься, лед таять. Аристотель утверждал, что в каждой категории действуют свои правила, в частности, математические законы применимы лишь к нематериальным объектам (объектам, не обладающим сущностью), например геометрическим фигурам (круг, треугольник) или небесным телам. Как пишет Аристотель, «между тем другие математические науки не исследуют никакой сущности, например арифметика и геометрия»[134][135]. Таким образом, с помощью чисел и геометрии нельзя объяснить степень нагрева предмета или траекторию движения стрелы. В этом случае следует оперировать терминами категории качества, такими как теплый или холодный, криволинейный или прямолинейный.

Математика, бесспорно, является фундаментом современной науки. Без нее не было бы физики. А еще она является важнейшим инструментом проведения исследований в химии, биологии, геологии и метеорологии. В средневековом мире эти отрасли существовали в рамках единой науки – естествознания, но никак не пересекались с математикой, поскольку оперировали субстанциями. Это существенно замедляло научный прогресс, поскольку только через математику можно достичь простоты. Как измерить длину третьей стороны прямоугольного треугольника? Этого можно и не делать, если вам известна длина двух других сторон и вы знакомы с теоремой Пифагора. Вот то, что дает математика науке: более простой и поэтому более доступный и предсказуемый способ познания мира. С точки зрения Аристотеля, этот метод был применим только для объектов, не обладающих сущностью, таких как свет, универсалии треугольников или небесных тел.