Руководство: как эффективно инвестировать в автоматизацию. Раскройте потенциал вашего бизнеса с помощью автоматизации: окончательное руководство к успеху - страница 12

Шрифт
Интервал


2. Машинное обучение (ML): ML – это раздел искусственного интеллекта, который фокусируется на разработке алгоритмов и моделей, которые позволяют машинам учиться на основе данных и улучшать свою производительность без явного программирования. Алгоритмы ML позволяют системам автоматически распознавать закономерности, делать прогнозы и адаптироваться к новым данным.

3. Обучение: В ML модели обучаются на большом объеме данных для выявления закономерностей и взаимосвязей. Это обучение включает в себя ввод в модель входных данных и известных выходных меток, что позволяет модели учиться и делать прогнозы или решения на основе новых, невидимых данных. Модели ML можно обучать с помощью различных методик, включая обучение под наблюдением, без присмотра, полу-под наблюдением и с подкреплением.