Относительность: для старших школьников и младших студентов - страница 5

Шрифт
Интервал


Задача 5. На рис.5 изображено колесо, катящееся, вправо со скоростью 10 м/с. Радиус колеса 1 м. Чему равна скорость движения точки А, расположенной на ободе, относительно точки на оси «О» колеса?

Ответ. Условия задачи оказались провокационными. Расстояние между точками А и О не меняется! Поэтому их взаимная скорость равна нулю. В этом можно убедиться визуально, если закрепить в точке «А» диска видеокамеру и направить ее к точке «О». На экране мы увидим, что, точка «А» покоится относительно оси «О» (хотя и движется относительно земли).

С относительностью, сложением и разложением скоростей мы сталкиваемся регулярно на автомобильных дорогах. И хорошо было бы, если бы иногда такое «сложение» – было лишь воображаемым. Рассмотрим некоторые эффекты аварийных движений в следующих задачах.



Рис.5. Диск, катящийся вправо

Откуда берется внезапное вращение автомобиля?

Яркими курьезами, связанными со сложением скоростей, могут служить ситуации, связанные со сложением вращательного и поступательного движения. Рассмотрим сценарий из повседневной       жизни.

Задача 6. На рис.6 изображена схема аварийной ситуации. При движении автомобиля на скользком вираже А-В произошла потеря сцепления колес с дорогой и машину выбросило на обочину ВС. Как известно из практики вождения, в подобных ситуациях возникает вращение автомобиля в горизонтальной плоскости. Почему это происходит? Чему равна частота вращения?

Решение. При рассмотрении данной ситуации необходимо учесть, что реальное тело, в отличие от материальной точки, может одновременно двигаться поступательно и совершать вращение «как целое». Поступательное движение характеризуется линейной скоростью v, измеряемой в м/c, а вращательное движение – угловой скоростью ω, измеряемой в радианах в секунду.

Нетрудно видеть, что до точки «А» движение автомобиля было «простым»: поступательным и прямолинейным. После входа в вираж «АВ» движение автомобиля делается сложным. Можно видеть, что машина начинает менять свою ориентацию. В частности, пройдя четверть поворота, ее ось, направленная от заднего сидения к переднему, совершит поворот φ на 90 градусов, то есть на π/2 радиан. Можно констатировать, что машина приобрела угловую скорость ω= Δφ /Δt, где φ – угол поворота, символ Δ означает «величину изменения».