Что же это такое? Машинное обучение (machine learning, ML) – наука о том, как заставить компьютеры выполнять объемную вычислительную задачу без явного программирования.
Классическим алгоритмам дают точные и полные правила для выполнения задачи, моделям Машинного обучения – данные. Мы говорим, что «подгоняем модель к данным» или «модель обучена на данных».
Проиллюстрируем это на простом примере. Предположим, мы хотим спрогнозировать цену дачного дома на основе:
• площади
• размера придомового участка
• количества комнат.
Мы могли бы попытаться построить классический алгоритм, который решает эту проблему. Этот алгоритм возьмет три вышеупомянутых признака (feature) и выдаст прогнозируемую цену на основе явного правила. Но на практике эта формула часто неочевидна.
Однако мы хотим автоматизировать этот процесс и построить модель. Она будет корректировать формулу сама каждый раз, когда появляются новые примеры цен на жилье. В целом, ML невероятно полезно для задач, когда мы располагаем неполной или слишком обильной информацией для программирования вручную. В этих случаях мы можем предоставить имеющиеся сведения и позволить ей «изучить» недостающую. Затем алгоритм будет использовать статистические методы для извлечения недостающих знаний.
Машинное обучение способно выполнять широкий спектр задач:
• оценки стоимости чего угодно
• изменение изображений
• помощь на письме
• обработка звука
• генерация текста и многие другие.
Представьте, что Машинное обучение – это конвейер по сборке автомобилей. И первое, что потребуется для его работы – металл, различные композитные материалы, и в конечном итоге, топливо. Вся эта троица олицетворяет данные.