На каждом шаге времени рекуррентный слой выполняет две основные операции:
1. Обновление скрытого состояния (Hidden State Update):
На основе текущего входа и предыдущего скрытого состояния выполняется операция, которая обновляет скрытое состояние. Обычно это линейное преобразование, которое комбинирует текущий вход и предыдущее скрытое состояние с соответствующими весами.
2. Передача скрытого состояния в следующий шаг (Hidden State Passing):
Обновленное скрытое состояние передается следующему шагу времени, чтобы оно могло быть использовано при обработке следующего элемента последовательности.
Таким образом, рекуррентные слои позволяют моделировать долгосрочные зависимости и контекст в последовательностях, таких как тексты, аудио, временные ряды и другие. Они обладают способностью запоминать информацию из прошлых шагов времени и использовать ее для принятия решений на текущем шаге.
Однако, стандартные рекуррентные слои, такие как простые рекуррентные слои (SimpleRNN), могут столкнуться с проблемой затухания (vanishing gradient problem) или взрывного градиента (exploding gradient problem), когда обновления градиента становятся очень маленькими или очень большими со временем. Для решения этой проблемы были разработаны более продвинутые рекуррентные слои, такие как LSTM (Long Short-Term Memory) и GRU (Gated Recurrent Unit), которые успешно применяются в практике.
Рекуррентные слои нашли применение во многих областях, включая машинный перевод, генерацию текста, анализ временных рядов, распознавание рукописного текста, генерацию речи и многое другое. Они играют ключевую роль в моделировании последовательностей и позволяют нейронным сетям понимать и обрабатывать информацию, имеющую временную зависимость.
Функции активации:
Функции активации применяются внутри каждого нейрона, чтобы вводить нелинейность в вычисления нейронной сети. Они помогают сети обучаться сложным нелинейным зависимостям в данных. Некоторые распространенные функции активации включают:
– Сигмоидная функция (Sigmoid):
Сигмоидная функция (Sigmoid) является одной из наиболее известных и широко используемых функций активации в нейронных сетях. Она имеет форму S-образной кривой и ограничивает выходное значение нейрона в диапазоне от 0 до 1. Математически сигмоидная функция определяется следующим образом: