Конец индивидуума. Путешествие философа в страну искусственного интеллекта - страница 19

Шрифт
Интервал


, машинное обучение.

Собственно, настоящий прорыв, объясняющий массовое распространение технологий ИИ и популярность этого термина, произошел в самом начале текущего столетия, когда информационные системы приобрели возможность обучаться самостоятельно, не следуя заранее установленным правилам. Эта цель была поставлена с самого начала информатики, однако добиться удовлетворительных результатов не удавалось. Успешное решение этой задачи объясняют три фактора: внезапно возникшее благодаря интернету изобилие данных, стремительное увеличение мощности компьютеров и открытие заново «нейронных сетей», то есть определенного способа конструирования информационных связей, при котором точки обработки данных в значительной мере независимы друг от друга, напоминая этим в какой-то степени нейроны нашего мозга.

Машинное обучение, в свою очередь, подразделяется на несколько техник в соответствии с уровнем вмешательства человека: «обучение с учителем» (supervised learning, под контролем программиста), «обучение с подкреплением» (reinforcement learning, когда машина «вознаграждается» в зависимости от качества ее результатов, а потому учится на собственных ошибках, что позволяет создавать базы систем «рекомендаций» книг, фильмов и т. п.) и «обучение без учителя» (unsupervised learning, когда машина в целом предоставлена сама себе). Что же касается «глубокого обучения» (deep learning), то речь идет о применении нейронных сетей для реализации трех упомянутых техник. Например, для идентификации кота на изображении можно применить контролируемое глубинное обучение[18].

Общая черта всех этих методов машинного обучения состоит в том, что полученные результаты нельзя полностью объяснить. Машина поглощает значительное количество данных, как-то по-своему «переваривает» их (на этом этапе человек более или менее ее контролирует и настраивает), а потом приходит к выводу, следуя при этом траектории, которую никто не мог бы воссоздать во всех подробностях. Поэтому всегда следует помнить о компромиссе между эффективностью и прозрачностью (explainability). Некоторые выдающиеся исследователи полагают, что машинное обучение означает устаревание всех традиционных алгоритмов, основанных на явных критериях, а также человеческих экспертных знаний[19].

Теперь вернемся к нашему примеру: как дать компьютеру инструкцию распознать кота на изображении, которое состоит из миллионов пикселей? Если мы попытаемся «описать» кота, то быстро выясним, что прийти к точному определению практически невозможно. Предположим, что у кота четыре лапы, но как определить лапу? Как прямоугольную форму относительно однородного цвета, которая заканчивается звездчатой структурой? Но как в таком случае отличить лапу от куска дерева, заканчивающегося веткой? Какое среднее расстояние следует заложить между четырьмя прямоугольниками, чтобы предположить наличие кота? А что делать с котами без ног, которых двухлетний ребенок мог бы идентифицировать с первого взгляда? Нужно ли потом дать определения всего остального, что есть у кота, начиная с усов и заканчивая хвостом?