) и т. д. – все прелести эволюции. Какие-то интересные картинки этого будущего читайте в работе «Designing Ecosystems of Intelligence from First Principles»
10. Смысл там в том, что у компьютера сейчас уже имеется какая-то модель мира (в виде большой языковой модели, LLM
11), и таких компьютеров всё больше, причём современный компьютер – это датацентр с десятками тысяч компьютеров, поддерживающих миллионы экземпляров таких моделей. На следующей стадии развития машинного интеллекта будет различение мира и модели мира (понимание, что интеллекту доступен не сам мир, а только модели мира, далее в интеллект-стеке будем обсуждать понятия прямого доступа, первого доступа, второго доступа
12).
Дальше машинный интеллект начнёт оперировать с такими моделями как убеждениями о мире, то есть работать не только с моделями-1 мира, а с моделями-2 этих моделей как убеждениями/уверенностями, что эти модели-1 отражают мир. В рассуждениях начинают участвовать beliefs по поводу models, и дальше идёт моделирование не только агентов, но и их моделей мира, а также своей уверенности в моделях агентов, моделях их картины мира, сравнение чужих убеждений со своими убеждениями о мире и уверенностью в них, и т. д. Это уже происходит. Изучение такого отражения «нашим интеллектом» моделей мира «других интеллектов» называют theory of mind (ToM), и современные нейронные сети, начиная с GPT-4 демонстрируют такие свойства на уровне человека13:

Модели, опубликованные до 2020 года, практически не показали способности решать задачи ToM. Тем не менее, первая версия GPT-3 («davinci-001»), опубликованная в мае 2020 года, решила около 40% задач на ложное убеждение – производительность, сопоставимая с 3,5-летними детьми. Вторая версия («davinci-002»; январь 2022 года) решила 70% задач на ложное убеждение, что сравнимо с результатами шестилетних детей. Её последняя версия, GPT-3.5 («davinci-003»; ноябрь 2022 года), решала 90% задач на ложное убеждение, на уровне семилетних детей. GPT-4, опубликованная в марте 2023 года, решила почти все задачи (95%). Эти результаты позволяют предположить, что способность к ToM-подобному (до сих пор считавшаяся уникальной для человека) могла спонтанно возникнуть как побочный продукт совершенствования языковых моделей14. Последнее достижение – это как получить 100% (заведомо лучше людей!) прохождение тестов ToM через правильные вопросы для GPT-4 (дать возможность нейросети подумать в несколько шагов, впрочем и для нейросеток людей это тоже должно помогать)