. Поэтому стратегия поменялась: стали применять более простые «аппаратные решения» (алгоритмы нейросетей меньшего размера, требующие меньше вычислительной аппаратуры для работы с ними), но предобучать их на большем количестве данных, а ещё делать лучше сами данные (по двум параметрам прежде всего: уменьшать количество ошибок в данных, чтобы в обучение арифметике не попадали примеры типа 2*2=5, а также закрывать данными более широкие классы предметных областей, ибо оказалось лучше иметь по паре примеров из десяти предметных областей, чем двадцать примеров из одной предметной области). Оказывается, «образование» кремниевых нейросетей более важно, чем «врождённый интеллект» этих нейросетей. Для людей выполняется всё то же самое. Если потенциального Эйнштейна не учить читать и писать, то он так и останется дикарём, ему не поможет никакая «врождённая гениальность».
Если вам свезло с последовательностью предъявляемых задач, то ваш интеллект может оказаться по их итогам лучше. «Ему повезло попасть в хороший проект, он там сильно вырос за последнюю пару лет» так же важно, как «ему повезло с родителями, они ему дали хорошие гены для мощного интеллекта».
⠀
Важен порядок решения проблем:
их надо решать по мере возрастания сложности
Важен не только порядок обучения, но и порядок решения проблем! Проведено много экспериментов, показывающих, что решение какой-то одной трудной проблемы «с нуля» обучающимся вычислителем на базе нейронной сети и какого-то эволюционного алгоритма часто невозможно, но решение какой-то последовательности проблем возрастающей трудности возможно79.
Рабочая жизнь – это бесконечное развитие, бесконечное познание, бесконечное обучение. Опыт предыдущих проектов ведь тоже учит мастерству, учит не только образование, понимаемое как «импорт» уже полученного кем-то знания. Получается, что чем лучше учебный план по обучению мыслительному мастерству/интеллекту – тем сильнее будет получаемый по итогам обучения интеллект! Те, кто решает больше самых разных проблем и берёт их каждый раз на границе тумана будущего, то есть на пределе своих возможностей – у тех вырабатывается не только хороший набор прикладного мастерства, но и сильный интеллект, набор общих для самых разных прикладных умений мыслительных умений/способностей, дающий возможность на следующем такте решить проблему, которую нельзя решить «с нуля», просто потратив много времени именно на её решение. Время на «упереться и попробовать решить» таким не предобученным и неопытным агентом будет потрачено, но результата не будет! Именно это неизменно подтверждается в экспериментах по AI: с нуля агент не может научиться решать какой-то класс проблем, потратив много времени, но если агент накапливает опыт решения проблем промежуточной сложности, то он справляется и с той проблемой, которую не мог решить при попытке это сделать «в лоб», методом грубой вычислительной силы.