Прямое распространение
Воображайте нейронную сеть как сложную машину, которая принимает входные данные, обрабатывает их и выдает результат. Процесс передачи данных от входа к выходу называется прямым распространением (forward propagation).
Итак, давайте посмотрим, как это работает. Представьте, что у нас есть изображение собаки, и мы хотим, чтобы наша нейронная сеть определила, является ли это изображение собакой или нет. Мы передаем это изображение в нашу нейронную сеть.
Каждый нейрон в сети связан с предыдущим слоем нейронов. Нейроны в первом слое получают пиксели изображения как входные данные. Они взвешивают эти данные (грубо говоря, они решают, насколько важен каждый пиксель) и передают результат в следующий слой. Этот процесс повторяется для каждого слоя до тех пор, пока мы не получим ответ от последнего слоя – нашу оценку того, является ли изображение собакой.
Процесс прямого распространения – это как волшебство, в котором нейронная сеть обрабатывает информацию и выдает ответ, но волшебство это, конечно же, математика и вычисления.
Обратное распространение
Теперь, когда у нас есть ответ от нашей нейронной сети, как она может учиться? Тут на сцену выходит обратное распространение (backpropagation).
Давайте представим, что наша нейронная сеть дала неправильный ответ – она сказала, что изображение собаки является изображением кошки. Обратное распространение помогает сети узнать свои ошибки и скорректировать весовые коэффициенты, чтобы она делала более точные прогнозы в будущем.
Сначала мы вычисляем, насколько сильно наша сеть ошиблась. Это называется ошибкой или потерей (loss). Затем мы используем эту ошибку, чтобы определить, как нужно корректировать весовые коэффициенты в каждом нейроне, начиная с последнего слоя и двигаясь назад к первому. Это происходит с использованием методов оптимизации, таких как градиентный спуск.
Итак, обратное распространение – это магия обучения. Она позволяет нейронной сети "учиться" на своих ошибках и становиться все более и более точной в своих прогнозах с каждой итерацией.
Активируйте ум: функции активации
Добро пожаловать в увлекательный мир функций активации – ключевого элемента нейронных сетей, который придает им способность обучаться и адаптироваться. Представьте себе функцию активации как бурые глаза нейрона, которые решают, включаться или выключаться в зависимости от входных данных. Давайте глубже погрузимся в эту тему и узнаем, как они работают.