Метрики качества модели для задач классификации, такие как Accuracy, Precision, Recall, F1-score, ROC AUC, Log Loss и Confusion Matrix (Матрица ошибок), применяются в различных жизненных ситуациях, где необходимо оценить производительность алгоритмов классификации. Вот несколько примеров:
Медицинская диагностика: В медицине алгоритмы классификации могут использоваться для диагностики заболеваний, определения стадий рака, предсказания риска развития определенных заболеваний или идентификации патогенов. Метрики, такие как Accuracy, Precision, Recall, F1-score, ROC AUC и Confusion Matrix, могут быть использованы для оценки эффективности этих алгоритмов и улучшения точности диагностики.
Фильтрация спама: В системах фильтрации спама алгоритмы классификации используются для определения спам-писем и разделения их от легитимных сообщений. Метрики, такие как Accuracy, Precision, Recall, F1-score, ROC AUC и Log Loss, могут быть использованы для оценки производительности этих систем и определения того, насколько хорошо они фильтруют спам.
Определение мошенничества: В банковской и финансовой сфере алгоритмы классификации используются для обнаружения подозрительных транзакций, мошенничества с кредитными картами или неправомерного использования. Метрики, такие как Accuracy, Precision, Recall, F1-score, ROC AUC и Confusion Matrix, могут быть использованы для оценки производительности этих систем и определения областей для дальнейшего улучшения.
Рекомендательные системы: