Вот несколько преимуществ фотонных микросхем по сравнению с кремниевыми микросхемами:
Высокая скорость передачи данных: Интегральная фотоника позволяет передавать данные на гораздо большие расстояния и со значительно более высокой скоростью, чем кремниевые микросхемы. Это особенно полезно для коммуникаций на большие расстояния или при работе с огромными объемами данных.
Низкое потребление энергии: Поскольку световые сигналы имеют намного меньшую диссипацию энергии по сравнению с электрическими, фотонные микросхемы потребляет гораздо меньше энергии при выполнении вычислений или передаче данных. Это может быть особенно важным для устройств, работающих от батарей или требующих минимального потребления энергии.
Большая пропускная способность: фотонные микросхемы обеспечивает большую пропускную способность данных, что означает возможность передавать и обрабатывать гораздо большие объемы информации одновременно. Это особенно полезно в сферах высокоскоростной связи, облачных вычислений и научных исследований.
Меньше электромагнитных помех: Световые сигналы не подвержены электрическим или магнитным помехам, которые могут возникать в кремниевых микросхемах. Это позволяет более надежно передавать данные без потерь или искажений из-за воздействия внешних факторов.
Использование новых материалов: Интегральная фотоника открывает двери для использования новых материалов со свойствами оптики, таких как наночастицы или квантовые точки. Это может привести к развитию более компактных устройств с расширенными функциональными возможностями.
В целом, интегральная фотоника представляет собой перспективную технологию со значительными преимуществами в компактности, скорости передачи данных и широких возможностей применения.
Актуальное состояние и ближайшие перспективы
Международная исследовательская группа под руководством профессора Павлоса Лагудакиса из лаборатории гибридной фотоники Сколтеха создала чрезвычайно энергоэффективный оптический переключатель, который не требует охлаждения и демонстрирует скорость около 1 триллиона операций в секунду, что примерно в 100-1000 раз быстрее современных высококачественных коммерческих транзисторов.
Фотонные транзисторы имеют потенциал быть значительно более эффективными и быстрыми по сравнению с традиционными коммерческими транзисторами. Это связано с использованием фотопроводимости и контролем пропускания света для управления потоком носителей заряда.