Искусственный интеллект в поисках исторической истины - страница 7

Шрифт
Интервал


Следует отметить, что алгоритмы GPT построены таким образом, что легко решают математические задачи или задачи по программированию, но плохо ориентируются в исторических фактах или различных гуманитарных теориях. Происходит путаница с фамилиями, именами, датами, названиями исторических работ. Отчего это происходит?

Сам искусственный интеллект на этот вопрос дает следующийответ: “Путаница с историческими фактами или гуманитарными теориями может возникать по нескольким причинам:

Отсутствие точных и однозначных исторических данных: в исторических событиях и теориях может быть много неясностей, разных точек зрения и возможных интерпретаций. Алгоритмы искусственного интеллекта, включая GPT, обучаются на основе текстовых данных, и если информация в источниках неоднозначна или противоречива, это может привести к путанице при формулировке ответов.

Недостаточное обучение на исторических данных: GPT обучается на основе больших объёмов текстовых данных, и если обучающая выборка содержит недостаточное количество исторических и гуманитарных материалов, то он может не быть полностью осведомлён о конкретных фактах или теориях.

Ошибки в данных или алгоритмах: несоответствие или ошибка в источниках данных для обучения, а также неисправленные ошибки в алгоритмах могут также привести к путанице с историческими фактами.

Ограниченность пред обученной модели: предобученные модели, такие как GPT, могут иметь ограничения, связанные с объёмом данных, качеством данных или размером модели. Это может ограничить способность модели точно установить или запомнить исторические факты.

В целом, GPT и другие алгоритмы искусственного интеллекта имеют потенциал для обработки различных типов информации, но требуют дополнительных усовершенствований и обучения на специфических данных, чтобы быть более точными и надёжными источниками для вопросов об истории и гуманитарных теориях.”

Тогда возникает второй вопрос: насколько быстро учится GPT ? Возможности ИИ в выдаче истинных данных в ближайшем будущем?

На этот вопрос ИИ даёт следующий ответ: GPT – это модель глубокого обучения, которая требует большого количества данных и вычислительных ресурсов для своего обучения. В процессе обучения GPT модель анализирует миллионы предложений и текстовых данных, чтобы понять структуру, грамматику и семантику текста. Время, необходимое для обучения GPT, зависит от объёма данных, доступных для обучения, и вычислительных мощностей, используемых для обучения модели. Обычно обучение GPT на больших корпусах текста может занимать от нескольких дней до нескольких недель. Возможности ИИ в выдаче истинных данных в ближайшем будущем будут продолжать развиваться. С появлением более мощных вычислительных ресурсов и улучшением алгоритмов обучения, модели, подобные GPT, смогут становиться все более точными в предоставлении информации. Однако необходимо помнить, что ИИ модели не обладают пониманием истинности данных или понятием этики. Важно использовать ИИ с осторожностью и критически анализировать полученные результаты.