Научные открытия - страница 7

Шрифт
Интервал


Мn–1 < Мn < Мn–1

Доказательство:

Представим квадрат в виде М4, в квадрат поместили круг Мn, чтобы в круг поместить вновь квадрат М4, он должен представлять собой величину M4 < Мn < М4.

Пример. Дети вырезали несколько треугольников. Потом решили из треугольников вырезать новые треугольники, а из них уже круги. Могут ли дети из круга вновь вырезать треугольники?

Решение: Представим треугольник в виде М3, а круг – Mn, тогда согласно условию М3 < M3 < Mn. Следовательно, Mn < M3

Ответ: Дети могут из круга вырезать новые треугольники.

Теорема 16. N–е количество прямоугольников Т будет представлять собой квадрат P, если прямоугольники Tn имеют необходимый размер R, вычислить который позволяют данные квадрата.

Тn = P, если R = P – Tn = 0

Доказательство:

Пусть T1 + T2 + … + Tn = P, то R = P – T1 – T2– … – Tn = 0. Для того чтобы N–е количество прямоугольников Т представляло собой квадрат P, необходимо определить размер R. Объединим две формулы в одну R = P – T1 – T2 – … – Tn = T1 + T2 + … + Tn – T1 – T2– … – Tn = 0 и получим равенство прямоугольников Tn с квадратом.

Пример. Ребята имели 5 машинок, которые хотели поместить в коробку, имеющую квадратное дно. Сколько машинок поместится в коробку?

Решение: Т = 5, P – квадратное дно, R – ?

Используя общую формулу R = P – Tn, получим R = P – 5. То есть размер пяти прямоугольников будет равен размеру квадрата.

Ответ: Чтобы вычислить количество машинок, необходимо знать размер коробок и машинок.

Теорема 17. Увеличение фигуры F с точностью пропорционально ее центра, меняет форму фигуры на P. Радиус R в любом месте может иметь и другое значение R1. От радиуса R зависит неизменность фигуры.

F = F, но F * Ri = P

Доказательство:

Пусть фигура F – круг. Увеличивая радиус R пропорционально центра круга, нужно учитывать, что радиус может измениться. Следовательно, F * Ri = P, где Р – это уже не круг.

Пример. Мальчик на дороге нарисовал мелом круг, затем вокруг первого круга второй круг, но получился овал. Почему у мальчика получился овал, а не круг?

Решение: F круг, P – овал, R – ?

Используя общую формулу F * Ri = P, получим Ri = P / F. Когда мальчик рисовал круг, его радиус был непостоянен.

Ответ: У мальчика получился овал, а не круг, потому что он не смог увеличить радиус круга с одинаковой точностью от центра.