Однозначно, не влияет!!!
Вот только… На акустической гитаре колебания деки так же микроскопичны, и глазом не видны. А в интернете есть ролик, где тестируют два «дредноута», один деревянный, другой – пластмассовый, и звучание тоже один в один. И в слепом прослушивании материал акустической деки вы тоже не сможете определить.
И какой вывод? Может быть, и в акустических гитарах несущая конструкция не влияет на звучание? Нет, вывод, что все эти аргументы несостоятельны.
И конечно же, коронный аргумент невлияльщиков: индукционный датчик не преобразует колебания немагнитной деки в ЭДС! Похоже, в школе физику не прогуливали. Правда, и подключенную электрогитару в руках не держали. И на вопрос, почему разные электрогитары звучат так по-разному, у них готов ответ: всё дело в датчиках. Но вопрос, каковы должны быть параметры хорошо звучащего датчика, повергает их в ступор.
Да, знания за среднюю школу здесь недостаточны, чтобы найти ответы на все эти вопросы, надо изучить физику колебательных явлений посерьёзней, чем она даётся в школьной программе.
Звучание струны состоит из двух фаз – атака и затухание. Обе фазы протекают по графику логарифмической функции, иначе говоря, по экспоненте. Длительность затухания называют сустейном, и характеризуют временем, в течение которого амплитуда колебаний струны понижается на 30 децибел.
Наиболее важна для восприятия характера звучания фаза атаки. В давние времена проводился эксперимент: из магнитофонной записи звучания разных инструментов удалили фазу атаки, так при прослушивании таких фонограмм профессиональные музыканты саксофон от рояля не могли отличить. Вывод: характер звучания инструмента формируется на стадии атаки.
***
Сустейн зависит от многих факторов, как в струне, так и в несущей конструкции.
Чем выше добротность струны, сильнее натяжение, тем сустейн будет длительней, а атака ярче.
Чем выше упругое сопротивление несущей конструкции, и больше длина рабочей части струны, тем сустейн длительней, а атака мягче.
Поскольку затухание протекает по экспоненте, его можно характеризовать через основание логарифмической функции, взяв шаг во времени, равный периоду колебания. Эта величина получила название логарифмический декремент затухания.
Логарифмическим декрементом затухания называется натуральный логарифм отношения двух последовательных амплитуд, взятых через период.