Все науки. №8, 2023. Международный научный журнал - страница 16

Шрифт
Интервал



Рис.1. Устройство для измерения потоков нейтронов и заряженных чатиц:

а-аксонометрический вид; b-вид спереди в разрезе; уголь α=45>0;

1— центральные сцинтилляционные детекторы; 2-ФЭУ-84;

3-детекторы направления, 4-ФЭУ-125; 5-углеродные поглотители;

6-нейтронные счетчики.


Для такого корреляционного анализа необходимы результаты весьма масштабных измерительных работ. То есть необходимо постоянно контролировать значения потоков, получаемых устройством, и записывать их в соответствующую информационную базу. Кроме того, для исследования зависимости этих токов от расстояния необходимо не менее трех устройств и размещать их в виде треугольников на расстоянии не менее 200 км друг от друга в сейсмически активных зонах.

Параметры землетрясения – магнитуда, время, координаты гипоцентра, заряженные частицы и потоки нейтронов от предлагаемых для прогноза устройств должны быть одновременно зафиксированы в одной информационной базе в хронологическом порядке.

Кроме того, параметры всех землетрясений происходивщие вовремя мониторингга нейтронных потоков и заряженных частиц такие как – время, магнитуда и координаты гипоцентра – должны быть включены в информационную базу в хронологическом порядке.

Для построения адекватных регрессионных модели прогноза параметров предстоящего землетрясения количество экспериментов должен быт неменее количество соответствующих датчиков комплекса. Например, для построения регрессионных модели прогноза параметров гипоцентра, исходя из количество датчиков направления, количество экспериментов должно быть неменее 24, а для прогноза магнитуды количество экспериментов должно быть не менее 3.

Этот процесс является режимом «обучения» предлагаемой измерительно-информационной системы. Собрав достаточное количество статистических данных в этом режиме, можно будет построить математическую модель, прогнозирующую параметры предстоящего землетрясения, используя регрессионный анализ результатов измерений. Предлагаемая измерительно-информационная система тогда станет комплексом, прогнозирующим параметров возможного землетрясения. Как и любая SMART-система, эта система всегда работает в режиме «прогноз-коррекция», при этом точность прогнозирования параметров землетрясений повышается.

Предлагаемая измерительно-информационная система построена на основе современных средств передачи информации и информационно-коммуникационных технологий. Ниже представлена структурная схема одного канала измерительного устройства измерительно-информационной системы: