Все науки. №8, 2023. Международный научный журнал - страница 2

Шрифт
Интервал


Keywords: mathematics, research, physical and mathematical modeling, number theory, function.

Сама гипотеза Коллатца является одной из самых простых не решённых задач, известные на сегодняшний день. Она представляет собой утверждение, что пусть берётся некоторое натуральное число и если оно не чётное, то оно умножается на 3 и после прибавляется единица или точнее выполняется функция 3x+1, если же число чётное, то оно делиться пополам. Таким образом, получается разделённые вид функции гипотезы Коллатца (1).



Далее, полученный результат в (1) может повториться. Так, настоящую модель можно определить для числа 7, которое является не чётным и выполняется первая функция, получается 22 – чётное число. Теперь выполняется вторая функция и получается 11 и т. д. В целом, этот ряд выглядит следующим образом (2).



Теперь можно выбрать другое число, к примеру 9 (3), 8 (4) или 6 (5).





Во всех случаях можно наблюдать одну и ту же закономерность, что в конце концов получается цикл 4, 2, 1, который и будет повторяться каждый раз до бесконечности. И идея гипотезы Коллатца заключается в том, чтобы доказать, что все натуральные числа приведут к настоящему циклу. Но примечательным является то, что диаграмма такой модели имеет интересную хаотичную схему со своими точками максимума и минимума. Именно анализу изменения графиков функции гипотезы Коллатца посвящена настоящая научная работа.

Изначально, стоит записать модель функции (1) в общем виде (6).



Так, можно подставить некоторые числа получая подходящие значения для чётных и не чётных чисел (8—9), однако, перед исследованием стоит заметить, что исключением является число ноль, которое заключает единственный отличающийся от циклов всех натуральных чисел цикл, состоящий из 2 элементов (7).





Для общего же ряда функции, получаем представление (10).



Итак, изначально стоит обратить внимание на анализ проводиться с использованием 110 этапов повторного оперирования и на этом промежутке отчётливо видны первоначальные пики на графике анализа натуральных чисел в промежутке от 1 до 10 (Граф. 1).


График 1. Функции для промежутка [1; 10] для 110 элементов


В данном случае можно будет наблюдать, что с увеличением чисел можно наблюдать отдельные пики, количество которых начинает с каждым разом возрастать, становясь хаотичным. Некоторые значения уже в своём начале могут принимать большие показатели функции, доходя до малого количества этапов, с каждым разом всё больше и больше приходя к повторному циклу, что видно на продолжении правой части каждой из функций. Далее анализ графика продолжается в следующем промежутке от 10 до 20 можно наблюдать увеличение высоты пиков функции, хотя плотность расположения каждой из функции также растёт. Более отчётливо это видно, при рассмотрении продолжения функции в правой части – на фоне циклов, где корреляция становиться всё более очевидной (Граф. 2).