Часто можно услышать еще такие термины как «нейронное программирование» и «глубокое обучение» (с английского ”Deep Learning”). По сути, это способы построения логики, которые находятся под «капотом» у модели машинного обучения. Конечному пользователю готовой модели абсолютно все равно, как проводилось обучение: будь то «нейронное программирование», «дерево решений» или что-то связанное с «глубоким обучением». Главное, чтобы это была действительно обученная (натренированная) модель с хорошей предсказательной силой (высокой вероятностью верного ответа). А выбор методов по ее построению и тренировке – это задача специалистов. Ведь с точки зрения тех, кто использует готовые модели, все работает одинаково. Это как с автомобилями – они такие разные, но у всех у них есть педаль газа и тормоза. Поэтому, если услышите термины «нейронное программирование» и «глубокое обучение», знайте, что это все то же «машинное обучение».
Кто использует машинное обучение в бизнесе
Чтобы оценить необходимость использования машинного обучения в бизнесе, достаточно взглянуть на лидеров рынка, которые в подавляющем большинстве уже активно его применяют[2] и, по данным консалтинговой компании McKinsey & Company, делают это практически во всех возможных областях (от ретейла и туризма до фармакологии и электрогенерации) и почти в 4 раза чаще, чем остальные фирмы. Судя по такой существенной разнице, машинное обучение является одним из основных инструментов, которыми должна уметь пользоваться организация, если она стремится выбиться в лидеры.
По данным аналитиков, после внедрения машинного обучения у компаний в среднем себестоимость производства снижается на 10–20 %, а выручка растет на 5–10 % в зависимости от сферы деятельности. Это невероятная выгода. Поэтому почти 70 % лидеров рынка говорят о том, что машинное обучение является частью их стратегии и у них составлены многолетние корпоративные планы по его дальнейшему развитию.
Бытует мнение, что при внедрении машинного обучения придется нанимать много сотрудников для поддержания работы созданных систем. Но по статистике лишь 30 % компаний придется увеличить штат на 3 %. И только у 5 % – он вырастет на 10 %. При этом в фирмах, связанных с тяжелой промышленностью, общее количество сотрудников, наоборот, уменьшится на 3–10 %.