Путешествие в мир квантовой физики. От основ до перспектив - страница 3

Шрифт
Интервал


Формула

Q = e^ (iΦ) (cos (θ/2) |0> + sin (θ/2) e^ (iΨ) |1>)


Где:


– Q – состояние квантовой системы

– Φ – фаза

– θ – угол вращения

– Ψ – фазовый сдвиг


Эта формула описывает квантовую систему, которая может быть в состояниях |0> и |1>, с различным вероятностным весом и с определенной фазой. Вращение это пространственное квантовое преобразование, которое меняет состояние квантовой системы.

Как рассчитать формулу

Для расчета этой формулы вам потребуется знать значения параметров Φ, θ и Ψ.


1. Вычислите значение e^ (iΦ), используя формулу Эйлера: e^ (iΦ) = cos (Φ) + i sin (Φ). Здесь Φ – это фаза.


2. Рассчитайте значения cos (θ/2) и sin (θ/2) соответственно для угла вращения θ. Эти значения представляют вероятностные веса состояний |0> и |1>.


3. Рассчитайте значение cos (Ψ) и sin (Ψ) для фазового сдвига Ψ. Эти значения определяют фазу состояния |1>.


4. Умножьте вероятностные веса и фазы на соответствующие коэффициенты и состояния |0> и |1>. Например, для состояния |0> результатом будет cos (Φ) cos (θ/2) |0>, а для состояния |1> – cos (Φ) sin (θ/2) sin (Ψ) + sin (Φ) cos (θ/2) |1>.


5. Сложите полученные результаты вместе, чтобы получить конечное состояние квантовой системы Q.


Обратите внимание, что расчет этой формулы может быть сложным в зависимости от конкретных значений параметров Φ, θ и Ψ. Поэтому важно учитывать конкретные условия и степень сложности расчета при использовании этой формулы.

Пример расчёта формулы

Для проведения полного расчета формулы и предоставления конкретных значений параметров и специфик системы, нам потребуются конкретные значения для фазы Φ, угла вращения θ и фазового сдвига Ψ.


Давайте примем следующие значения:


Φ = π/4

θ = π/3

Ψ = π/6


Подставим эти значения в формулу и проведем расчеты:


1. Вычисляем e^ (iΦ):

e^ (iΦ) = cos (Φ) + i sin (Φ) = cos (π/4) + i sin (π/4) = (√2) /2 + i (√2) /2.


2. Вычисляем cos (θ/2) и sin (θ/2):

cos (θ/2) = cos (π/6) = √3/2,

sin (θ/2) = sin (π/6) = 1/2.


3. Вычисляем cos (Ψ) и sin (Ψ):

cos (Ψ) = cos (π/6) = √3/2,

sin (Ψ) = sin (π/6) = 1/2.


4. Раскладываем формулу:

Q = e^ (iΦ) (cos (θ/2) |0> + sin (θ/2) e^ (iΨ) |1>)

= [(√2) /2 + i (√2) /2] [(√3/2) |0> + (1/2) (√3/2) e^ (iπ/6) |1>]

= [(√2√3) /4 + i (√2/4)] |0> + [(√6) /4 + i (√3) /4] e^ (iπ/6) |1>

= [(√6 + i√2) /4] |0> + [(√6 + i√3) /4] |1>.


Таким образом, получаем конечное состояние квантовой системы: