Следует отметить, что СКО доходности портфеля заметно отличается в меньшую сторону от СКО доходностей исходных активов , и . То есть доходность портфеля является наиболее устойчивой из всего допустимого множества портфелей (в [1] портфель называют наименее рискованным, так как СКО доходности ассоциируется с риском).
Координаты вершины выпуклой части достижимого множества и соответствующие объёмы инвестирования в активы , и можно определить не только численными методами, но методом выделения экстремума функции с использованием частных производных.
Учитывая, что преобразуем выражение для дисперсии доходности портфеля к виду
Для определения минимального значения СКО доходности портфеля, содержащего три актива, решим систему уравнений
В результате получаем соотношения для расчёта объёмов инвестирования в активы , и , при которых достигается минимум СКО доходности портфеля
где
Рассмотренный подход позволяет определить координаты и вершины достижимого множества , которая соответствует портфелю с минимальным значением СКО доходности.
Аналогичный подход может быть использован для расчёта объёмов инвестирования в активы , и , при которых достигается минимум СКО доходности портфеля для заданного значения МО доходности портфеля . Другими словами, представляется возможным вывести соотношения для расчёта границы выпуклой части достижимого множества.
Учитывая, что и , получаем
Такое представление объёмов инвестирования и позволяет преобразовать выражение для дисперсии доходности портфеля как функцию объёма инвестирования
Для определения минимального значения СКО доходности портфеля при заданном значении МО доходности портфеля необходимо решить уравнение
В результате получаем соотношения для расчёта объёмов инвестирования в активы , и
где:
Анализ полученных соотношений показывает, во–первых, объёмы инвестирования , и прямо пропорциональны МО доходности портфеля , следовательно, граница выпуклой части достижимого множества является гиперболой. Во–вторых, условия , и ограничивают данную гиперболу. Координаты точек и , которые ограничивают гиперболу, могут быть определены из условий , , На рис. 1.4 такими точками являются , , и , , , которые соответствуют портфелям с двумя активами. В–третьих, граница выпуклой части достижимого множества формируется: