Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие - страница 8

Шрифт
Интервал


Кроме того, недостаточно создать НД – необходимо уделить внимание инфраструктуре и инструментам хранения, использования и управления, таким, например, как библиотеки и реестры. Их основными задачами являются аннотация, интеграция и представление НД для контроля качества, удобного и повсеместного использования, в том числе для ПО на основе ТИИ.

Методологии создания наборов данных для сферы здравоохранения продолжают формироваться и в настоящее время, прежде всего – на основе масштабных научных исследований. Так, в основу настоящего учебного пособия положены результаты «Эксперимента по использованию инновационных технологий в области компьютерного зрения для анализа медицинских изображений и дальнейшего применения в системе здравоохранения города Москвы» (mosmed.ai) – крупнейшего в мире проспективного многоцентрового клинического исследования технологий искусственного интеллекта [3].

Глава 1. НАБОРЫ ДАННЫХ И ПРИНЦИПЫ ИХ КЛАССИФИКАЦИИ

1.1. Основные понятия

Медицинские данные подразделяются на несколько подмножеств, каждое из которых является важным компонентом в обучении, оценке качества ПО на основе ТИИ и используется для других прикладных и фундаментальных задач в сфере искусственного интеллекта для здравоохранения. Каждый компонент (подмножество, набор) данных направлен на решение определенной задачи.

Набор данных (НД) – это совокупность данных, прошедших предварительную подготовку (обработку) в соответствии с требованиями законодательства Российской Федерации об информации, информационных технологиях и о защите информации и необходимых для разработки программного обеспечения на основе искусственного интеллекта [1].

Разметка данных – этап обработки структурированных и неструктурированных данных, в процессе которого данным (в том числе текстовым документам, фото- и видеоизображениям) присваиваются идентификаторы, отражающие тип данных (классификация данных), и (или) осуществляется интерпретация данных для решения конкретной задачи, в том числе с использованием методов машинного обучения [1].

В процессе создания, хранения и использования НД необходимо руководствоваться следующими нормативно-правовыми актами, межгосударственными и национальными стандартами:

– Указ Президента Российской Федерации от 10.10.2019 №490 «О развитии искусственного интеллекта в Российской Федерации»;