Инициализация кубитов и их потенциальные применения. Уникальная квантовая формула - страница 5

Шрифт
Интервал



Операция вращения по оси Y на угол π/4 применяется к исходному состоянию |0⟩ второго кубита. Эта операция преобразует состояние |0⟩ в новое состояние, которое можно обозначить как |ψ⟩.


Состояние |ψ⟩ представляет собой суперпозицию двух состояний: |0⟩ и |1⟩. Точнее, оно может быть записано как cos (π/8) |0⟩ + sin (π/8) |1⟩.


Так как исходное состояние второго кубита было |0⟩, и операция вращения по оси Y на угол π/4 вызвала суперпозицию состояний, второй кубит после этой операции находится в суперпозиции состояний |0⟩ и |1⟩.


Однако, если нам нужно инициализировать второй кубит в состоянии |1⟩, дополнительная операция может быть применена. Можно использовать, например, операцию вращения по оси X на угол π. Эта операция переводит состояние суперпозиции второго кубита в состояние |1⟩.


Инициализация второго кубита в состоянии |1⟩ включает применение операции вращения по оси Y на угол π/4 для создания суперпозиции состояний |0⟩ и |1⟩, и дополнительную операцию вращения по оси X на угол π для установки второго кубита в состояние |1⟩.

Инициализация третьего кубита

Разбор операции вращения по оси Z на угол π/3 и ее значимость для инициализации третьего кубита

Операция вращения по оси Z на угол π/3 играет важную роль в инициализации третьего кубита в определенном состоянии.


Рассмотрим ее подробнее.


Исходное состояние третьего кубита мы обозначим как |0⟩. Оно представляет собой базовое состояние, где кубит находится в состоянии 0.


Применение операции вращения по оси Z на угол π/3 к этому исходному состоянию приводит к изменению состояния кубита. Операция преобразует состояние |0⟩ в новое состояние, которое можно обозначить как |ψ⟩.


Состояние |ψ⟩ после применения операции вращения по оси Z на угол π/3 представляет собой суперпозицию двух состояний: |0⟩ и |1⟩. Более конкретно, состояние |ψ⟩ может быть записано как cos (π/6) |0⟩ + exp (iπ/3) sin (π/6) |1⟩.


Значение exp (iπ/3) представляет собой комплексный множитель, который вводит фазовый сдвиг в состоянии |1⟩. Этот сдвиг означает, что состояние |1⟩ приобретает дополнительную фазу, которая зависит от угла вращения.


Операция вращения по оси Z на угол π/3 инициализирует третий кубит в состоянии |ψ⟩, которое представляет собой суперпозицию состояний |0⟩ и |1⟩ с дополнительным фазовым сдвигом.