Квантовые устройства и интегральные схемы. Теория и расчёты - страница 5

Шрифт
Интервал



2. Квантовое конфинирование: Квантовые точки обладают способностью квантового конфинирования, то есть ограничениям и контролю движения носителей заряда – электронов и дырок. Это достигается за счет создания наноразмерных областей материала, где электроны или дырки находятся в ограниченном пространстве, что приводит к изменению их энергетического спектра и свойств.


При квантовом конфинировании электроны или дырки становятся «запертыми» внутри квантовой точки и ограничены в трех измерениях. Движение свободных носителей заряда, которое обычно происходит в материалах без ограничений, ограничивается внутри квантовой точки. Это приводит к изменению энергии и возникающему квантовому эффекту.


Квантовое конфинирование электронов и дырок в квантовых точках приводит к дискретным энергетическим уровням, которые электроны могут занимать. Из-за измененного энергетического спектра и ограниченного пространства, носители заряда в квантовых точках обладают уникальными электронными свойствами. Такие свойства, как энергия и расстояние между энергетическими уровнями, зависят от размеров квантовой точки и свойств материала.


3. Квантовые переходы: Из-за ограничения размеров квантовых точек и квантового конфинирования электроны и дырки находятся в дискретных энергетических уровнях. Переход электронов между этими уровнями, вызванный внешними воздействиями, называется квантовым переходом.


Квантовые переходы играют важную роль в различных областях, таких как квантовые вычисления, фотоника и оптика. В квантовых вычислениях, например, кубиты (квантовые биты) обычно реализуется с помощью квантовых переходов в квантовых точках или других квантовых системах. Путем применения определенных внешних воздействий, таких как электрическое поле или свет, возможно проводить операции с кубитами, такие как накопление, суперпозиция и взаимодействие.


В фотонике и оптике, квантовые переходы в квантовых точках могут быть использованы для создания светоизлучающих устройств, таких как светодиоды и лазеры. При прямом квантовом переходе электроны переходят с более высокого энергетического уровня в более низкий, при этом излучая фотоны определенной энергии. Это позволяет создавать свет с определенной длиной волны, что полезно в оптических коммуникациях, датчиках и других приложениях.