Моделирования и анализа динамики клеточных процессов. Молекулы во времени - страница 11

Шрифт
Интервал



В данном случае, мы предположим, что внутри опухоли плотность распределения клеток имеет сферическую симметрию. Мы можем использовать радиальный профиль, зависящий от расстояния от центра опухоли, чтобы задать волновую функцию Ψ.


Ψ(r) = R(r) * Y(θ, φ)


Здесь r – радиальное расстояние от центра опухоли, θ и φ – углы направления, а R(r) и Y(θ, φ) представляют радиальную часть и гармоники Якоби соответственно.


Функция R(r) будет определять радиальное распределение клеток в опухоли и может быть выбрана в соответствии с характеристиками конкретной опухоли или данных исследования. Она может быть получена путем аппроксимации или анализа экспериментальных данных.


Функция Y(θ, φ) отражает угловую зависимость распределения клеток и связана с симметрией системы.


Подбор вида волновой функции Ψ должен основываться на конкретных характеристиках опухоли и требованиях исследования. Он может подвергаться дальнейшей модификации и уточнениям в соответствии с новыми данными и наблюдениями.


2. Оценка Δ (dΨ) /Δt: Рассчитайте производную волновой функции по времени для анализа изменений в распределении клеток опухоли со временем. Это может включать оценку скорости роста опухоли и распределения клеток в различных областях.


Для оценки производной волновой функции Ψ по времени Δ(dΨ)/Δt, нужно использовать уравнение Шредингера – одно из основных уравнений квантовой механики.


Уравнение Шредингера записывается следующим образом:

iħ ∂Ψ/∂t = H Ψ


В данном уравнении ħ – постоянная Планка, t – время, Ψ – волновая функция и H – оператор Гамильтониана, который описывает энергию системы.


Для расчета производной Δ(dΨ)/Δt нам необходимо знать явный вид волновой функции Ψ и учитывать зависимости системы опухоли.


В контексте роста опухоли, можно представить изменение волновой функции искомым образом, подробнее – модифицировать волновую функцию в зависимости от времени для отражения изменений в распределении клеток. Оценка Δ(dΨ)/Δt позволяет анализировать скорость роста опухоли и изменения в распределении клеток в различных областях.


Однако в реальных системах, где опухоль имеет сложную структуру и зависит от множества факторов, расчет Δ (dΨ) /Δt может быть сложным. В таких случаях можно применить численные методы или упростить модель, чтобы получить оценку изменения в распределении клеток с течением времени.