Кроме того, некоторые ученые указывают на то, что текущие методы ИИ, такие как Нейронные Сети и Глубокое обучение, являются сильно упрощенной моделью человеческого мозга и имеют ряд ограничений, которые не позволят достичь истинного Общего ИИ (AGI) без существенных изменений данной технологии.
6. Расскажи подробнее про текущие и потенциальные ограничения для глубокого обучения и текущих архитектур нейронных сетей, на которые указывают ученые?
Глубокое обучение и нейронные сети достигли значительного прогресса в решении многих задач, но они имеют ряд ограничений, которые могут препятствовать достижению истинного Общего ИИ (AGI). Вот некоторые из них:
1. Необходимость больших объемов данных: Глубокое обучение обычно требует огромных объемов размеченных данных для обучения. Это может быть проблематично, поскольку разметка данных может быть трудоемкой и дорогостоящей, а в некоторых случаях необходимые данные могут быть недоступны или непригодны для использования из-за проблем с конфиденциальностью или этикой.
2. Вычислительные требования: Обучение глубоких нейронных сетей может быть очень ресурсоемким процессом, требующим больших вычислительных мощностей и энергии. Также к таким вычислениям возникают вопросы с точки зрения экологии и охраны окружающей среды.
3. Отсутствие интерпретируемости: Глубокие нейронные сети часто описываются как «черные ящики», поскольку их решения могут быть сложными или даже невозможными для понимания человеком. Это может быть проблемой в областях, где требуется прозрачность и возможность объяснить решения, например, в таких как медицина или юриспруденция.
4. Отсутствие способности обобщения: В то время как человеческий мозг способен обобщать и переносить знания из одной области на другую, глубокие нейронные сети обычно специализируются на конкретных задачах и стремятся к буквальности, что ограничивает их способность к обобщению.
5. Отсутствие долгосрочной памяти и планирования: Большинство моделей глубокого обучения не имеют встроенной долгосрочной памяти или способности планировать на основе прошлых взаимодействий, что является ключевым аспектом человеческого интеллекта.
6. Отсутствие «здравого смысла» и контекстуального понимания: Нейронные сети могут быть очень хороши в определенных задачах, но они не имеют общего понимания и моделей мира или «здравого смысла», который используют люди при принятии решений. Это может приводить к ошибкам, которые кажутся очевидными для людей, но являются недоступными для «понимания» ИИ-системами.