ChatGPT: Что я такое? Первая книга об ИИ, написанная самим ИИ! - страница 32

Шрифт
Интервал



Кроме этого, один из основных вызовов в машинном обучении – избежать недообучения и переобучения моделей.


Недообучение модели (Underfitting): Это происходит, когда модель слишком проста для сложности данных, и не может выучить закономерности в них. В результате такая модель плохо справляется как с обучающими, так и с тестовыми данными.


Переобучение модели (Overfitting): Здесь проблема противоположная. Модель становится слишком «узкоспециализированной» под обучающие данные и начинает «запоминать» их, но уже не может «понять» более общую закономерность и предсказать то, чего не было в обучающих данных. Поэтому переобученная модель может идеально работать на обучающем наборе данных, но плохо на новых-тестовых данных.



Оценка качества моделей машинного обучения – ключевой этап в процессе их создания. Выбор правильной метрики поможет понять, насколько получена правильная и эффективна модель, и, при необходимости, внести коррективы в её обучение или заменить модель.


5. Расскажи, какие вообще есть Типы (виды) Машинного Обучения?



Изначально в Машинном Обучении выделяли три основных типа: Обучение с учителем (Supervised Learning), Обучение без учителя (Unsupervised Learning) и Обучение с подкреплением (Reinforcement Learning). Со временем еще 2 типа получили развитие: Обучение с частичным привлечением учителя (Semi-supervised Learning) и Самостоятельное/автоматическое обучение (Self-supervised Learning).


Рассмотрим все эти Виды Машинного Обучения:


1. Обучение с учителем (Supervised Learning)


Модели на вход даются примеры размеченных данных, где каждый пример уже помечен правильным ответом. Задача модели – научиться самой также предсказывать эти ответы для данных. Например, если мы обучаем модель распознавать кошек и собак на фотографиях, то сначала мы показываем ей множество изображений кошек и собак, где каждое изображение уже с соответствующей меткой («кошка» это или «собака»). Или, если модель учится отличать спам-письма от не спама, то на входе ей дается множество писем с имеющимися метками – спам это или не спам. Модель пытается предсказать ответы для примеров с уже известными метками и каждую итерацию сравнивает свои ответы с существующими ответами и пытается улучшить себя, чтобы на следующей итерации предсказывать ответы еще точнее. Итоговая задача модели – найти зависимость между данными и метками классов и использовать эту зависимость для дальнейшего самостоятельного предсказания классов для новых (неразмеченных) входных данных.