3. Задачи регрессии: Регрессия – это тип задачи, где модель предсказывает непрерывное значение. Например, предсказание цены на дом на основе различных характеристик, таких как площадь, количество спален, год постройки и т.д., является задачей регрессии. В этом случае, мы пытаемся предсказать непрерывную переменную (цена на дом) на основе других входных данных об этом доме.
4.Задачи Обучения с подкреплением (Reinforcement Learning): Сюда можно отнести примеры с управлением роботами (которые получают отклик от среды – плохо или хорошо они выполняют свои задачи), развитием навыков игровых агентов (получающие отклик от игровой среды – в случае выигрыша или проигрыша), систем рекомендаций (где отклик – это качество удовлетворения пользователей этими рекомендациями).
5.ЗадачиГенеративного ИИ: В отличие от задач классического машинного обучения (классификации, кластеризации и регрессии), Генеративные модели обучаются на данных и могут генерировать новые, ранее не встречавшиеся образцы данных. Данные могут представлять собой текст, изображения, речь и т. д. Задачи, которые могут выполнять такие модели, включают создание разнообразного контента: текстов, изображений, звука и музыки и т. д. Кроме этого, модели генеративного ИИ могут выполнять широкий класс задач, связанных с дальнейшей обработкой и преобразованием этого контента: ответы на вопросы, анализ настроений и тональности в текстах или видео; извлечение искомой информации из текста изображений, видео или аудио; маркировку изображений и распознавание объектов.