Квантовая физика и формула F = λh/P. Открытия, применения и практические расчеты - страница 4

Шрифт
Интервал



Если мы знаем массу частицы и ее скорость (или импульс) в системе, мы можем рассчитать длину волны, используя формулу де Бройля. Обратно, зная длину волны частицы, мы можем найти ее энергию системы.


Эта связь между длиной волны и энергией системы является фундаментальным результатом квантовой физики и демонстрирует дуализм частиц, который состоит в том, что частицы могут обладать как частицеподобными, так и волновыми свойствами. Длина волны частицы позволяет нам описывать ее волновые свойства и предсказывать ее поведение на микроуровне.

Примеры и расчеты

Рассмотрим несколько примеров расчетов, связанных с длиной волны частицы и ее связью с энергией системы.


Пример 1: Расчет длины волны фотона с известной энергией


Пусть у нас есть фотон с энергией E = 3 электрон-вольта (эВ). Чтобы рассчитать его длину волны, используем формулу де Бройля: λ = h / p.

Для фотона, у которого нет массы (m = 0), импульс p можно выразить через энергию: p = E / c, где c – скорость света.

Подставляем в формулу: λ = h / (E / c).

Теперь подставим значения: h = 6,62607015 × 10^-34 Дж·с (постоянная Планка), c = 299 792 458 м/с (скорость света), E = 3 эВ = 3,2 × 10^-19 Дж.

Получаем: λ = (6,62607015 × 10^-34 Дж·с) / ((3,2 × 10^-19 Дж) / (299 792 458 м/с)) = 6,209 × 10^-7 м.


Фотон с энергией 3 эВ имеет длину волны около 620 нм.


Пример 2: Расчет энергии частицы с известной длиной волны


Рассмотрим электрон с известной длиной волны λ = 0,1 нм. Чтобы рассчитать его энергию, снова используем формулу де Бройля: λ = h / p.

В данном случае, учитывая, что у электрона есть масса, используем классическую формулу импульса: p = mv, где m – масса электрона, v – его скорость.

Подставляем в формулу: λ = h / (mv).

Разрешим эту формулу относительно энергии E: E = p^2 / (2m).

Теперь подставляем значение длины волны и известные физические константы.

Получаем: E = (h^2) / (2m (λ^2)).

Подставляем значения: h = 6,62607015 × 10^-34 Дж·с (постоянная Планка), m = 9,10938356 × 10^-31 кг (масса электрона), λ = 0,1 нм = 1 × 10^-10 м.

Получаем: E = ((6,62607015 × 10^-34 Дж·с) ^2) / (2 × (9,10938356 × 10^-31 кг) × ((1 × 10^-10 м) ^2)) = 2,734 × 10^-15 Дж.


Электрон с длиной волны 0,1 нм имеет энергию около 2,734 × 10^-15 Дж.


Эти примеры демонстрируют, как мы можем использовать формулу де Бройля, чтобы рассчитать длину волны или энергию частицы. Зная либо длину волны, либо энергию, мы можем легко перейти от одной величины к другой, используя формулу де Бройля и известные физические константы, такие как постоянная Планка и скорость света.