ChatGPT. Мастер подсказок, или Как создавать сильные промты для нейросети - страница 8

Шрифт
Интервал


Кроме того, у него есть дополнительные сервисы наподобие библиотек графических и контентных подсказок, отдельная группа в соцсети для проектов «ПК» (https://pandeon.pro/), курсы (тоже бесплатные) и прочие интересные вещи.

«И при чем здесь книга?» – спросите вы.

Давайте зайдем чуть издалека, чтобы было понятнее.

Мы сразу решили, что точно не будем еще одним сервисом, просто транслирующим ChatGPT для конечного пользователя. Для подобной «легкотни» есть и оригинальный сайт OpenAI, и всевозможные боты в мессенджерах, например.

Конечно, и такой подход приносил бы деньги, однако на этом бы наше участие и заканчивалось. По сути, мы просто перепродавали бы доступ к оригиналу. Никакого творчества и романтики.

Мы сделали NeuroPanda другим. В основе его работы сейчас лежат два формата: А-блок и чаты.

А-блоки – разделы с блоками, преднастроенные определенными промтами для конкретных задач. Например, А-блоком является крупный раздел с блоками для написания большой экспертной статьи.

Мы разбили задачу на шаги, в ходе которых вы можете собрать все элементы (заголовки, темы, идеи вообще и разделов, списки, кластеры и т. п.) так, как вам удобно, а затем на основе всего этого сделать добротную статью.

Если делать так самому просто в режиме чат-подсказки (пусть и многоуровневой, мощной), то все куда более сложно и непредсказуемо: слишком много вводных, слишком многое нужно учитывать, слишком велика вероятность запутать ИИ и нарваться на галлюцинации (это явление рассмотрим позже).

Чаты представляют собой как «чистый» ChatGPT без преднастроек, так и специализированные чаты для разных задач. Один, например, «заточен» на обучение языкам, другой поможет лучше находить логические ошибки или готовиться по конкретной теме.

А вот теперь о том, при чем здесь книга.

Процессы такого уровня – колоссальный труд. Нам пришлось не просто изучить подсказки изнутри и потратить много-много миллионов токенов («валюта» и мера объема GPT) в процессе работы. Нам волей-неволей пришлось:

• открыть массу фишек и закономерностей;

• сделать тысячи ошибок и понять их причину;

• найти интересные стратегии промтинга;

• обкатать сотни вариантов структуры и запросов;

• разочароваться в поверхностных промтах;

• прокачать креативность и увидеть новые пути;

• и т. д. и т. п.

В итоге мы стали сильными практиками промт-инжиниринга и накопили такой объем полезного