Максимизируйте эффективность машинного обучения. Полное руководство по информационной системе - страница 16

Шрифт
Интервал



1.3. Нормализация признаков: Некоторые алгоритмы машинного обучения могут быть чувствительны к несбалансированным или различающимся по масштабу признакам. Нормализация признаков позволяет привести их значения к определенному интервалу или стандартному распределению. Популярными методами нормализации являются масштабирование на интервал [0,1], стандартизация с нулевым средним и единичной дисперсией или нормализация по Z-оценке.


1.4. Преобразование категориальных признаков в числовые: некоторые алгоритмы машинного обучения требуют числовых данных. Если у вас есть категориальные признаки, такие как «пол» или «страна», их можно преобразовать в числовые признаки, используя методы, такие как кодирование меток или кодирование с одним активным состоянием (one-hot encoding).


1.5. Разбиение данных на обучающую, проверочную и тестовую выборки: для оценки качества модели необходимо разделить данные на независимые наборы. Обучающая выборка используется для обучения модели, проверочная – для настройки гиперпараметров и выбора лучшей модели, а тестовая выборка – для оценки качества предсказаний на неизвестных данных. Разбиение данных может быть выполнено случайным образом или с использованием временных разделителей, в зависимости от типа данных и целей анализа.