|α|^2 + |β|^2 = 1
Суперпозиция состояний кубита позволяет проводить параллельные вычисления и обрабатывать информацию в подобной комбинации состояний, что даёт кубитам значительное преимущество в решении некоторых задач, по сравнению с классическими битами.
2. Квантовая запутанность:
Два или более кубита могут быть взаимосвязаны, и их состояния могут быть запутанными. Квантовая запутанность возникает, когда два или более кубита становятся взаимосвязанными и их состояния становятся неотделимо связанными. В таком случае, изменение состояния одного кубита мгновенно влияет на состояние другого кубита, независимо от расстояния между ними.
Состояние запутанных кубитов нельзя описать независимо для каждого кубита, а должно быть описано через комбинацию состояний обоих кубитов. Изменение состояния одного запутанного кубита мгновенно приводит к изменению состояния другого кубита, что отражает сильную взаимосвязь между ними.
Квантовая запутанность является ключевым свойством квантовой механики, и она позволяет проводить параллельные вычисления, где операции над одним кубитом могут влиять на состояние нескольких других кубитов. Запутанность также позволяет более эффективно использовать ресурсы квантовой системы и предоставляет новые возможности для квантовых вычислений, криптографии и других приложений квантовых технологий.
3. Измерение:
Измерение кубита возвращает определенное состояние 0 или 1 с определенной вероятностью. Результат измерения зависит от амплитуд состояний кубита, и вероятности измерений вычисляются как модуль квадрата соответствующих амплитуд.
При измерении кубита его состояние «схлопывается» в одно из базисных состояний 0 или 1 с вероятностями, определяемыми амплитудами состояний. Вероятность получения состояния 0 вычисляется как модуль квадрата амплитуды, представляющей состояние 0, и аналогично для состояния 1.
Например, предположим, что у нас есть кубит в состоянии |ψ⟩ = α|0⟩ + β|1⟩, где α и β – амплитуды состояний 0 и 1 соответственно. Тогда вероятность получения состояния 0 при измерении будет равна |α|^2, а вероятность получения состояния 1 будет равна |β|^2. В сумме эти вероятности всегда дают единицу:
|α|^2 + |β|^2 = 1
Измерения кубитов являются фундаментальными операциями в квантовой информации и квантовых вычислениях. Результаты измерений используются для извлечения информации из состояний кубитов и принятия решений на основе полученных результатов.