Объяснение правил дифференцирования и их применение к формуле AGI
Правила дифференцирования – это набор правил и формул, которые позволяют вычислять производные функций по их переменным. Они являются ключевым инструментом при использовании градиентного спуска и оптимизации функций.
В контексте формулы AGI, правила дифференцирования применяются для вычисления производных функций, которые входят в числитель и знаменатель формулы AGI.
Рассмотрим несколько правил дифференцирования, которые могут быть применены к функциям, описывающим числитель и знаменатель формулы AGI:
1. Правило дифференцирования для константы: Производная константы равна нулю.
Это правило гласит, что производная по переменной любой постоянной функции равна нулю. Формально, если есть функция f (x) = C, где C – константа, то производная f (x) по переменной x будет равна нулю:
df (x) /dx = 0
Это связано с тем, что производная определяет скорость изменения функции по переменной, и поскольку у константы нет зависимости от переменной, она не меняется и ее изменение равно нулю.