Однако если наша модель показывает высокую точность на обучающей выборке, но низкую точность на новых данных, это может свидетельствовать о переобучении. Например, если наша модель очень хорошо запоминает цены на дома в обучающей выборке, включая шум и случайные факторы, она может показать низкую обобщающую способность, когда мы попытаемся предсказать цены на новые дома, чьи характеристики отличаются от тех, что были в обучающей выборке.
1.2.3 Математические модели и алгоритмы обучения
Математические модели и алгоритмы обучения составляют основу машинного обучения, предоставляя инструменты для анализа данных и принятия решений на их основе. Эти модели представляют собой математические формулировки, которые позволяют моделировать закономерности в данных и делать предсказания или принимать решения на их основе. Они могут быть различной сложности и структуры, в зависимости от конкретной задачи и характеристик данных.
Одним из наиболее распространенных типов математических моделей в машинном обучении является линейная регрессия. Эта модель используется для анализа взаимосвязи между набором независимых переменных и зависимой переменной и для предсказания значений зависимой переменной на основе значений независимых переменных. Линейная регрессия является примером метода обучения с учителем, где модель обучается на данных, для которых известны значения зависимой переменной, и затем используется для предсказания значений на новых данных.
Другой широко используемый тип моделей – это нейронные сети, которые моделируют работу человеческого мозга и состоят из множества взаимосвязанных узлов (нейронов). Нейронные сети способны обрабатывать сложные данные и извлекать сложные закономерности, что делает их особенно эффективными в таких областях, как обработка изображений, распознавание речи и анализ текста.
Одним из ключевых аспектов математических моделей и алгоритмов обучения является их способность обучаться на основе данных. Это означает, что модели адаптируются к изменениям в данных и улучшают свою производительность с опытом. Процесс обучения моделей может включать в себя такие методы, как градиентный спуск, стохастический градиентный спуск, метод опорных векторов и многие другие, которые позволяют оптимизировать параметры модели для достижения наилучшей производительности.