```python
import numpy as np
import matplotlib.pyplot as plt
def sis_model(beta, gamma, susceptible, infected, days):
N = susceptible + infected
S = [susceptible]
I = [infected]
for _ in range(days):
new_infections = beta * S[-1] * I[-1] / N
new_recoveries = gamma * I[-1]
susceptible -= new_infections
infected += new_infections – new_recoveries
S.append(susceptible)
I.append(infected)
return S, I
# Параметры модели
beta = 0.3 # Скорость инфекции
gamma = 0.1 # Скорость выздоровления
susceptible = 990
infected = 10
days = 160
# Запуск модели
S, I = sis_model(beta, gamma, susceptible, infected, days)
# Визуализация результатов
plt.figure(figsize=(10, 6))
plt.plot(S, label='Susceptible')
plt.plot(I, label='Infected')
plt.xlabel('Days')
plt.ylabel('Population')
plt.title('SIS Model')
plt.legend()
plt.grid(True)
plt.show()
```
Этот код создает функцию `sis_model`, которая моделирует SIS-модель в течение определенного количества дней. Затем задаются параметры модели и вызывается функция `sis_model` с этими параметрами. Результаты моделирования визуализируются с помощью библиотеки `matplotlib`.
На графике, полученном в результате выполнения этого кода, можно увидеть изменение численности двух категорий популяции – восприимчивых к инфекции (Susceptible) и инфицированных (Infected) – в течение времени (в днях), согласно модели SIS.
– "Susceptible" показывает, как изменяется количество людей, которые могут быть инфицированы.
– "Infected" отображает количество людей, которые являются инфицированными и могут передавать болезнь.
График позволяет визуализировать динамику эпидемии, показывая, как число инфицированных и восприимчивых меняется в течение времени в моделируемой популяции.
5. Модель случайного блуждания – это абстрактная математическая модель, основанная на идее случайного перемещения индивидов и их контактах друг с другом. Эта модель предполагает, что каждый индивид перемещается в пространстве случайным образом, не зависящим от действий других людей, и встречается с другими индивидами случайным образом. Таким образом, модель отражает основные характеристики движения и контактов в реальных социальных сетях, что делает ее полезной для изучения распространения инфекций.
В рамках модели случайного блуждания каждый индивид представляется точкой или агентом в пространстве, который в каждый момент времени принимает случайное направление и перемещается на некоторое расстояние. Встречи между индивидами могут быть случайными и происходить с некоторой заданной интенсивностью.