Рис.2.3.
По условию задачи всего 100 туристов. 20+13+30+5+7+2+3=80 туристов знают хотя бы один язык, следовательно, 20 человек не владеют ни одним из данных языков.
1.3. Размещения без повторений
Пример 3. Сколько можно составить телефонных номеров из 6 цифр каждый, так чтобы все цифры были различны?
Это пример задачи на размещение без повторений. Размещаются здесь 10 цифр по 6. А варианты, при которых одинаковые цифры стоят в разном порядке считаются разными.
Если X-множество, состоящие из n элементов, m≤n, то размещением без повторений из n элементов множества X по m называется упорядоченное множество А, содержащее m элементов из m элементов.
Количество всех размещений из n элементов по m обозначают
(2.1)
n! – n-факториал (factorial анг. сомножитель) произведение чисел натурального ряда от 1 до какого либо числа n. n!=1*2*3*…*n. 0!=1.
Значит, ответ на выше поставленную задачу будет
1.4. Перестановки без повторений
В случае n=m (см. размещения без повторений) А из n элементов по m называется перестановкой множества x.
Количество всех перестановок из n элементов обозначают P>n.
P>n=n!
Действительно при n=m:
(2.2)
Пример 4. Сколько различных шестизначных чисел можно составить из цифр 0, 1, 2, 3, 4,5, если цифры в числе не повторяются?
Решение:
Найдем количество всех перестановок из этих цифр: P>6=6!=720
Пример 5. «Проказница Мартышка, Осел, Козел, Да косолапый Мишка
Затеяли играть квартет …Стой, братцы стой! – Кричит Мартышка, – погодите! Как музыке идти? Ведь вы не так сидите…
И так, и э так пересаживались – опять музыка на лад не идет.
Тут пуще прежнего пошли у них раздоры И споры, Кому и как сидеть…»
Вероятно, крыловские музыканты так и не перепробовали всех возможных мест. Однако способов не так уж и много. Сколько?
Решение
Здесь речь идет о перестановке из четырех элементов,
Значит, возможно, P>4=4!=24 варианта перестановок.
1.5. Сочетания без повторений.
Сочетанием без повторений называется такое размещение, при котором порядок следования элементов не имеет значения.
Всякое множество X состоящее из m элементов, называется сочетанием из n элементов по m.
Таким образом, количество вариантов при сочетании будет меньше числа вариантов размещений.
Число сочетаний из n элементов по m обозначается.
(2.3).
Пример 6. У одного человека 7 книг по математике, а у второго – 9. Сколькими способами они могут обменять друг у друга две книги на две книги.