Python и нейросети:Революционный подход к изучению программирования - страница 4

Шрифт
Интервал



Основные библиотеки Python для работы с нейросетями: TensorFlow, PyTorch


– TensorFlow: Разработанная Google библиотека, предоставляет мощные инструменты для создания и тренировки различных типов нейросетей. TensorFlow поддерживает как настольные, так и мобильные платформы, предлагая удобные инструменты для разработки и деплоя моделей.


– PyTorch: Библиотека от Facebook, которая стала особенно популярна в академических кругах благодаря своей гибкости и удобству использования при построении сложных архитектур нейросетей. PyTorch поддерживает динамическое создание графов, что дает исследователям больше свободы в экспериментировании.


Практические примеры использования нейросетей в Python


В качестве практического примера рассмотрим задачу классификации изображений с использованием свёрточной нейросети в TensorFlow. Мы используем набор данных CIFAR-10, который содержит тысячи цветных изображений, разделенных на 10 классов.


import tensorflow as tf

from tensorflow.keras import layers, models


# Загрузка и предобработка данных

(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.cifar10.load_data()

train_images, test_images = train_images / 255.0, test_images / 255.0


# Построение модели CNN

model = models.Sequential([