2.2. Определение и ключевые понятия Искусственного Интеллекта
Искусственный интеллект (ИИ) – это раздел компьютерных наук, посвященный созданию систем, способных выполнять задачи, традиционно требующие человеческого интеллекта. Эти задачи включают распознавание речи, интерпретацию визуальной информации, принятие решений, и перевод между языками. В широком смысле ИИ можно разделить на две основные категории:
Узкий ИИ (Narrow AI): Системы, спроектированные для выполнения конкретной задачи без человеческого вмешательства. Узкий ИИ часто ограничен заранее определенными функциями и не обладает способностью к обучению или адаптации вне своей первоначальной области применения.
Общий ИИ (General AI): Теоретическая концепция машины, которая могла бы выполнить любую интеллектуальную задачу, что умеет человек. Общий ИИ обладал бы способностью к самообучению и адаптации в широком диапазоне сценариев, подобно человеческому мозгу.
Основные технологии ИИ:
Машинное обучение (ML): Это метод, позволяющий системам ИИ учиться на данных и улучшать свою производительность без явного программирования для каждой задачи. Машинное обучение использует статистические методы для того, чтобы машина могла идентифицировать закономерности в данных и делать прогнозы.
Нейронные сети: Вдохновленные структурой мозга, нейронные сети состоят из слоев узлов или "нейронов", каждый из которых имитирует небольшую, упрощенную версию нейрона человеческого мозга. Эти сети могут обучаться выполнению сложных задач, включая распознавание образов и обработку естественного языка, благодаря своей способности анализировать большие объемы данных.
Глубокое обучение: Подмножество машинного обучения, использующее сложные, многослойные нейронные сети. Это позволяет модели обнаруживать сложные, абстрактные паттерны в данных, делая глубокое обучение особенно полезным для задач, где необходимо распознавать и интерпретировать большие объемы информации, таких как анализ изображений и видео, распознавание речи и автоматический перевод.
Использование этих технологий позволяет ИИ успешно интегрироваться в различные аспекты современной жизни и радикально трансформировать отрасли, предоставляя решения для увеличения эффективности, снижения затрат и улучшения качества услуг. В следующих разделах мы подробно рассмотрим, как машинное обучение и глубокое обучение изменяют конкретные сферы деятельности, включая здравоохранение, финансы, транспорт и многие другие.