На этом уроке мы разберем одну из «вечных» задач – построение графиков функций. Мы научимся строить графики в декартовой и полярной системах координат, оптимизировать процедуру их построения; разберем особенности построения разрывных функций. Также мы узнаем, что такое интерполяция и разберем несколько ее видов.
Прежде, чем перейти к алгоритмам построения графиков, вкратце приведем некоторые сведения о координатных системах. В любой системе координат на плоскости точка задается парой значений (a, b). Каждая такая пара однозначно определяет место точки на плоскости. Обратное, вообще говоря, выполняется не всегда.
Декартова система координат
В декартовой системе координат, как правило, пары обозначаются (x, y), хотя это и не принципиально. Смысл значения x – это проекция точки на ось OX, y – это проекция на ось OY.
рис. 1.2
Полярная система координат
В полярной системе координат точки будем обозначать парой (r, t). Где r – это расстояние от точки О, называемой полюсом, а t – угол между горизонтальным лучом, исходящим из полюса, направленным вправо, и радиусом-вектором, указывающим на точку (рис. 1.3).
рис. 1.3
В ряде случаев полярные координаты оказываются удобнее декартовых. Например, для задания кривых на плоскости, особенно для задания различных спиралей, таких как спираль Архимеда, логарифмическая спираль, трилистника. Также полярная система координат используется:
– в астрономических наблюдениях;
– в фотографии – используют фильтр, переводящий координаты точек из прямоугольной системы в полярную, создавая сферический эффект снимка;
– в биржевых графиках – необычный формат на основе полярных координат предложил в 1990-е годы российский математик Владимир Иванович Елисеев;
– во взаимосвязи градусов и времени (в году 365 дней, в окружности – 360 градусов);
– в медицине – компьютерная томография сердца изображается в полярной системе координат;
– в системах безопасности при идентификации по радужной оболочке глаза.
Функции, заданные следующим образом y = f (x), называются заданными явно. Здесь y явно зависит от переменной x, а f определяет некоторое правило, по которому, взяв переменную x, можно получить y. При этом переменная x называется независимой переменной, а y зависимой. Или говорят, что