2. Датчики состояния окружающей среды:
– Использование сенсоров, измеряющих параметры окружающей среды, такие как температура, влажность, атмосферное давление, освещенность и т. д.
– Случайные флуктуации этих величин могут быть использованы в качестве дополнительного источника случайности.
3. Аппаратные генераторы шума:
– Использование специализированных аппаратных устройств, генерирующих случайные шумы, например, с помощью лавинных диодов или туннельных диодов.
– Эти устройства могут обеспечивать высокоскоростную и надежную генерацию случайных данных.
4. Сетевые источники:
– Использование сетевого трафика, времени прибытия сетевых пакетов, случайных событий в распределенных системах в качестве источника дополнительной случайности.
– Это позволяет использовать распределенные сетевые ресурсы для усиления энтропии генератора.
5. Микроклиматические эффекты:
– Использование случайных флуктуаций в микроклимате, таких как колебания температуры, влажности или электрических полей в непосредственной близости от генератора.
– Эти микроскопические изменения могут быть зафиксированы и использованы для дополнительного усиления непредсказуемости.
Разнообразные физические, сетевые и микроклиматические источники могут быть интегрированы в качестве PM-параметра для повышения общей стойкости и надежности безопасного генератора случайных чисел.
Способы интеграции PM в общую архитектуру генератора;
1. Гибридная архитектура:
– Сочетание квантовых источников случайности и физических шумовых источников в одной системе.
– Использование специализированных аппаратных схем для детектирования и оцифровки физических шумов.
– Параллельная обработка сигналов от квантовых и физических источников случайности.
2. Комбинирование выходных потоков:
– Генерация случайных последовательностей из нескольких независимых источников, включая квантовые и физические.
– Применение алгоритмов объединения, усреднения и кросс-проверки данных от различных источников.
– Использование модулей, обеспечивающих согласованность и балансировку выходных потоков.
3. Иерархическая архитектура:
– Организация многоуровневой системы, где физические шумы используются на более низких уровнях, а квантовые источники – на более высоких.
– Применение физических шумов для предварительной подготовки и обработки данных, а квантовых источников – для финальной генерации высококачественных случайных последовательностей.